Review: Water channel proteins in the human placenta and fetal membranes

Autores
Damiano, Alicia Ermelinda
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It has been established that the permeability of the human placenta increases with advancing gestation. Indirect evidence has also proposed that aquaporins (AQPs) may be involved in the regulation of placental water flow but the mechanisms are poorly understood. Five AQPs have been found in the human placenta and fetal membranes [AQP1, 3, 4, 8 and 9]. However, the physiological function(s) and the regulation of these proteins remain unknown. Emerging evidence has shown that human fetal membrane AQPs may have a role in intramembranous amniotic fluid water regulation and that alterations in their expression are related to polyhydramnios and oligohydramnios. In addition, we have observed a high expression of AQP3 and AQP9 in the apical membrane of the syncytiotrophoblast. Moreover, AQP9 was found to be increased in preeclamptic placentas, but it could not be related to its functionality for the transport of water and mannitol. However, a significant urea flux was seen. Since preeclampsia is not known to be associated with an altered water flux to the fetus we propose that AQP9 might not have a key role in water transport in human placenta, but a function in the energy metabolism or the urea uptake and elimination across the placenta. However, the role of AQP9 in human placenta is still speculative and needs further studies. Insulin, hCG, cAMP and CFTR have been found to be involved in the regulation of the molecular and functional expression of AQPs. Further insights into these mechanisms may clarify how water moves between the mother and the fetus.
Fil: Damiano, Alicia Ermelinda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Materia
Aquaporins
Human Placenta
Syncytiotrophoblast
Water Transport
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12889

id CONICETDig_33126fff7da80a3e88b742a3392950c0
oai_identifier_str oai:ri.conicet.gov.ar:11336/12889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Review: Water channel proteins in the human placenta and fetal membranesDamiano, Alicia ErmelindaAquaporinsHuman PlacentaSyncytiotrophoblastWater Transporthttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3It has been established that the permeability of the human placenta increases with advancing gestation. Indirect evidence has also proposed that aquaporins (AQPs) may be involved in the regulation of placental water flow but the mechanisms are poorly understood. Five AQPs have been found in the human placenta and fetal membranes [AQP1, 3, 4, 8 and 9]. However, the physiological function(s) and the regulation of these proteins remain unknown. Emerging evidence has shown that human fetal membrane AQPs may have a role in intramembranous amniotic fluid water regulation and that alterations in their expression are related to polyhydramnios and oligohydramnios. In addition, we have observed a high expression of AQP3 and AQP9 in the apical membrane of the syncytiotrophoblast. Moreover, AQP9 was found to be increased in preeclamptic placentas, but it could not be related to its functionality for the transport of water and mannitol. However, a significant urea flux was seen. Since preeclampsia is not known to be associated with an altered water flux to the fetus we propose that AQP9 might not have a key role in water transport in human placenta, but a function in the energy metabolism or the urea uptake and elimination across the placenta. However, the role of AQP9 in human placenta is still speculative and needs further studies. Insulin, hCG, cAMP and CFTR have been found to be involved in the regulation of the molecular and functional expression of AQPs. Further insights into these mechanisms may clarify how water moves between the mother and the fetus.Fil: Damiano, Alicia Ermelinda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaElsevier2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12889Damiano, Alicia Ermelinda; Review: Water channel proteins in the human placenta and fetal membranes; Elsevier; Placenta; 32; Supp 2; 4-2011; s207-s2110143-4004enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S014340041000514Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.placenta.2010.12.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:56Zoai:ri.conicet.gov.ar:11336/12889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:57.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Review: Water channel proteins in the human placenta and fetal membranes
title Review: Water channel proteins in the human placenta and fetal membranes
spellingShingle Review: Water channel proteins in the human placenta and fetal membranes
Damiano, Alicia Ermelinda
Aquaporins
Human Placenta
Syncytiotrophoblast
Water Transport
title_short Review: Water channel proteins in the human placenta and fetal membranes
title_full Review: Water channel proteins in the human placenta and fetal membranes
title_fullStr Review: Water channel proteins in the human placenta and fetal membranes
title_full_unstemmed Review: Water channel proteins in the human placenta and fetal membranes
title_sort Review: Water channel proteins in the human placenta and fetal membranes
dc.creator.none.fl_str_mv Damiano, Alicia Ermelinda
author Damiano, Alicia Ermelinda
author_facet Damiano, Alicia Ermelinda
author_role author
dc.subject.none.fl_str_mv Aquaporins
Human Placenta
Syncytiotrophoblast
Water Transport
topic Aquaporins
Human Placenta
Syncytiotrophoblast
Water Transport
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv It has been established that the permeability of the human placenta increases with advancing gestation. Indirect evidence has also proposed that aquaporins (AQPs) may be involved in the regulation of placental water flow but the mechanisms are poorly understood. Five AQPs have been found in the human placenta and fetal membranes [AQP1, 3, 4, 8 and 9]. However, the physiological function(s) and the regulation of these proteins remain unknown. Emerging evidence has shown that human fetal membrane AQPs may have a role in intramembranous amniotic fluid water regulation and that alterations in their expression are related to polyhydramnios and oligohydramnios. In addition, we have observed a high expression of AQP3 and AQP9 in the apical membrane of the syncytiotrophoblast. Moreover, AQP9 was found to be increased in preeclamptic placentas, but it could not be related to its functionality for the transport of water and mannitol. However, a significant urea flux was seen. Since preeclampsia is not known to be associated with an altered water flux to the fetus we propose that AQP9 might not have a key role in water transport in human placenta, but a function in the energy metabolism or the urea uptake and elimination across the placenta. However, the role of AQP9 in human placenta is still speculative and needs further studies. Insulin, hCG, cAMP and CFTR have been found to be involved in the regulation of the molecular and functional expression of AQPs. Further insights into these mechanisms may clarify how water moves between the mother and the fetus.
Fil: Damiano, Alicia Ermelinda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
description It has been established that the permeability of the human placenta increases with advancing gestation. Indirect evidence has also proposed that aquaporins (AQPs) may be involved in the regulation of placental water flow but the mechanisms are poorly understood. Five AQPs have been found in the human placenta and fetal membranes [AQP1, 3, 4, 8 and 9]. However, the physiological function(s) and the regulation of these proteins remain unknown. Emerging evidence has shown that human fetal membrane AQPs may have a role in intramembranous amniotic fluid water regulation and that alterations in their expression are related to polyhydramnios and oligohydramnios. In addition, we have observed a high expression of AQP3 and AQP9 in the apical membrane of the syncytiotrophoblast. Moreover, AQP9 was found to be increased in preeclamptic placentas, but it could not be related to its functionality for the transport of water and mannitol. However, a significant urea flux was seen. Since preeclampsia is not known to be associated with an altered water flux to the fetus we propose that AQP9 might not have a key role in water transport in human placenta, but a function in the energy metabolism or the urea uptake and elimination across the placenta. However, the role of AQP9 in human placenta is still speculative and needs further studies. Insulin, hCG, cAMP and CFTR have been found to be involved in the regulation of the molecular and functional expression of AQPs. Further insights into these mechanisms may clarify how water moves between the mother and the fetus.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12889
Damiano, Alicia Ermelinda; Review: Water channel proteins in the human placenta and fetal membranes; Elsevier; Placenta; 32; Supp 2; 4-2011; s207-s211
0143-4004
url http://hdl.handle.net/11336/12889
identifier_str_mv Damiano, Alicia Ermelinda; Review: Water channel proteins in the human placenta and fetal membranes; Elsevier; Placenta; 32; Supp 2; 4-2011; s207-s211
0143-4004
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S014340041000514X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.placenta.2010.12.012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268892186017792
score 13.13397