Diseño del proceso de una torre de vacío: Ventajas de la simulación
- Autores
- Vega, Judith Macarena; Ale Ruiz, Liliana; Martínez, Julieta; Erdmann, Eleonora
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos.
Heavy hydrocarbons are the greatest oil resource in the world, however in the past had been put aside as an energy resource due to the difficulties and costs associated with production. Nowdays, the industry is financing this research because of the importance of production and the characterization. To analyse the vacuum tower, we need ASTMD1160 temperature at 10 mmHg and oil density, thereafter it can be obtained the curve of TBP760 (True Boiling Point). To correlate different boiling points with vaporized percentages for each change of pressure on the products, is necesary to build up a phase diagram with the EFV760 (Equilibrium Flash Vaporization) and EFV10 temperature. The simulator through internal calculations resolves the phase diagram, compared with the difficulty posed by manual calculations. In this paper a vacuum tower simulator is developed by Aspen HYSYS V8.3, and using the heavy oil as input data. The major advantage of the theoretical designed simulation process is the time resolution.
Fil: Vega, Judith Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina
Fil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Consejo de Investigacion; Argentina
Fil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina
Fil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina. Instituto Tecnológico de Buenos Aires; Argentina - Materia
-
Aspen Hysys V8.3
Destilación al Vacío
Petroleo Pesado
Simulación - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22309
Ver los metadatos del registro completo
id |
CONICETDig_3302bd1b9090d0cbb9fe9b92c6d1a097 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22309 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Diseño del proceso de una torre de vacío: Ventajas de la simulaciónVega, Judith MacarenaAle Ruiz, LilianaMartínez, JulietaErdmann, EleonoraAspen Hysys V8.3Destilación al VacíoPetroleo PesadoSimulaciónhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos.Heavy hydrocarbons are the greatest oil resource in the world, however in the past had been put aside as an energy resource due to the difficulties and costs associated with production. Nowdays, the industry is financing this research because of the importance of production and the characterization. To analyse the vacuum tower, we need ASTMD1160 temperature at 10 mmHg and oil density, thereafter it can be obtained the curve of TBP760 (True Boiling Point). To correlate different boiling points with vaporized percentages for each change of pressure on the products, is necesary to build up a phase diagram with the EFV760 (Equilibrium Flash Vaporization) and EFV10 temperature. The simulator through internal calculations resolves the phase diagram, compared with the difficulty posed by manual calculations. In this paper a vacuum tower simulator is developed by Aspen HYSYS V8.3, and using the heavy oil as input data. The major advantage of the theoretical designed simulation process is the time resolution.Fil: Vega, Judith Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; ArgentinaFil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaUniversidad de Cuenca. Facultad de Ciencias Químicas2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22309Vega, Judith Macarena; Ale Ruiz, Liliana; Martínez, Julieta; Erdmann, Eleonora; Diseño del proceso de una torre de vacío: Ventajas de la simulación; Universidad de Cuenca. Facultad de Ciencias Químicas; Revista de la Facultad de Ciencias Quimicas; 12; 9-2015; 30-371390-1869CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.ucuenca.edu.ec/ojs/index.php/quimica/article/view/526info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:12Zoai:ri.conicet.gov.ar:11336/22309instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:12.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
title |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
spellingShingle |
Diseño del proceso de una torre de vacío: Ventajas de la simulación Vega, Judith Macarena Aspen Hysys V8.3 Destilación al Vacío Petroleo Pesado Simulación |
title_short |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
title_full |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
title_fullStr |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
title_full_unstemmed |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
title_sort |
Diseño del proceso de una torre de vacío: Ventajas de la simulación |
dc.creator.none.fl_str_mv |
Vega, Judith Macarena Ale Ruiz, Liliana Martínez, Julieta Erdmann, Eleonora |
author |
Vega, Judith Macarena |
author_facet |
Vega, Judith Macarena Ale Ruiz, Liliana Martínez, Julieta Erdmann, Eleonora |
author_role |
author |
author2 |
Ale Ruiz, Liliana Martínez, Julieta Erdmann, Eleonora |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Aspen Hysys V8.3 Destilación al Vacío Petroleo Pesado Simulación |
topic |
Aspen Hysys V8.3 Destilación al Vacío Petroleo Pesado Simulación |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos. Heavy hydrocarbons are the greatest oil resource in the world, however in the past had been put aside as an energy resource due to the difficulties and costs associated with production. Nowdays, the industry is financing this research because of the importance of production and the characterization. To analyse the vacuum tower, we need ASTMD1160 temperature at 10 mmHg and oil density, thereafter it can be obtained the curve of TBP760 (True Boiling Point). To correlate different boiling points with vaporized percentages for each change of pressure on the products, is necesary to build up a phase diagram with the EFV760 (Equilibrium Flash Vaporization) and EFV10 temperature. The simulator through internal calculations resolves the phase diagram, compared with the difficulty posed by manual calculations. In this paper a vacuum tower simulator is developed by Aspen HYSYS V8.3, and using the heavy oil as input data. The major advantage of the theoretical designed simulation process is the time resolution. Fil: Vega, Judith Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina Fil: Ale Ruiz, Liliana. Universidad Nacional de Salta. Consejo de Investigacion; Argentina Fil: Martínez, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina Fil: Erdmann, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones Para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones Para la Industria Química; Argentina. Instituto Tecnológico de Buenos Aires; Argentina |
description |
Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22309 Vega, Judith Macarena; Ale Ruiz, Liliana; Martínez, Julieta; Erdmann, Eleonora; Diseño del proceso de una torre de vacío: Ventajas de la simulación; Universidad de Cuenca. Facultad de Ciencias Químicas; Revista de la Facultad de Ciencias Quimicas; 12; 9-2015; 30-37 1390-1869 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22309 |
identifier_str_mv |
Vega, Judith Macarena; Ale Ruiz, Liliana; Martínez, Julieta; Erdmann, Eleonora; Diseño del proceso de una torre de vacío: Ventajas de la simulación; Universidad de Cuenca. Facultad de Ciencias Químicas; Revista de la Facultad de Ciencias Quimicas; 12; 9-2015; 30-37 1390-1869 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ucuenca.edu.ec/ojs/index.php/quimica/article/view/526 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Cuenca. Facultad de Ciencias Químicas |
publisher.none.fl_str_mv |
Universidad de Cuenca. Facultad de Ciencias Químicas |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613360049455104 |
score |
13.070432 |