KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain

Autores
Martínez Hernández, Elizabeth; Zeglin, Alissa; Almazan, Erik; Perissinotti, Paula Patricia; He, Yungui; Koob, Michael; Martin, Jody L.; Piedras-Rentería, Erika S.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.
Fil: Martínez Hernández, Elizabeth. Loyola University Chicago; Estados Unidos
Fil: Zeglin, Alissa. Loyola University Chicago; Estados Unidos
Fil: Almazan, Erik. Loyola University Chicago; Estados Unidos
Fil: Perissinotti, Paula Patricia. Loyola University Chicago; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: He, Yungui. University of Minnesota; Estados Unidos
Fil: Koob, Michael. University of Minnesota; Estados Unidos
Fil: Martin, Jody L.. Loyola University Chicago; Estados Unidos
Fil: Piedras-Rentería, Erika S.. Loyola University Chicago; Estados Unidos
Materia
CAV3.2
DRG
KLHL1
MECHANICAL SENSITIVITY
PAIN CONTROL
SHRNA
T-TYPE CHANNEL
VOLTAGE-GATED CALCIUM CHANNEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142996

id CONICETDig_328c92ac4abd67c28ecfbacc63261b9e
oai_identifier_str oai:ri.conicet.gov.ar:11336/142996
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to PainMartínez Hernández, ElizabethZeglin, AlissaAlmazan, ErikPerissinotti, Paula PatriciaHe, YunguiKoob, MichaelMartin, Jody L.Piedras-Rentería, Erika S.CAV3.2DRGKLHL1MECHANICAL SENSITIVITYPAIN CONTROLSHRNAT-TYPE CHANNELVOLTAGE-GATED CALCIUM CHANNELhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.Fil: Martínez Hernández, Elizabeth. Loyola University Chicago; Estados UnidosFil: Zeglin, Alissa. Loyola University Chicago; Estados UnidosFil: Almazan, Erik. Loyola University Chicago; Estados UnidosFil: Perissinotti, Paula Patricia. Loyola University Chicago; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: He, Yungui. University of Minnesota; Estados UnidosFil: Koob, Michael. University of Minnesota; Estados UnidosFil: Martin, Jody L.. Loyola University Chicago; Estados UnidosFil: Piedras-Rentería, Erika S.. Loyola University Chicago; Estados UnidosFrontiers Media2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142996Martínez Hernández, Elizabeth; Zeglin, Alissa; Almazan, Erik; Perissinotti, Paula Patricia; He, Yungui; et al.; KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain; Frontiers Media; Frontiers in Molecular Neuroscience; 12; 315; 1-2020; 1-101662-5099CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fnmol.2019.00315/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnmol.2019.00315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:29:52Zoai:ri.conicet.gov.ar:11336/142996instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:29:52.924CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
title KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
spellingShingle KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
Martínez Hernández, Elizabeth
CAV3.2
DRG
KLHL1
MECHANICAL SENSITIVITY
PAIN CONTROL
SHRNA
T-TYPE CHANNEL
VOLTAGE-GATED CALCIUM CHANNEL
title_short KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
title_full KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
title_fullStr KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
title_full_unstemmed KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
title_sort KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain
dc.creator.none.fl_str_mv Martínez Hernández, Elizabeth
Zeglin, Alissa
Almazan, Erik
Perissinotti, Paula Patricia
He, Yungui
Koob, Michael
Martin, Jody L.
Piedras-Rentería, Erika S.
author Martínez Hernández, Elizabeth
author_facet Martínez Hernández, Elizabeth
Zeglin, Alissa
Almazan, Erik
Perissinotti, Paula Patricia
He, Yungui
Koob, Michael
Martin, Jody L.
Piedras-Rentería, Erika S.
author_role author
author2 Zeglin, Alissa
Almazan, Erik
Perissinotti, Paula Patricia
He, Yungui
Koob, Michael
Martin, Jody L.
Piedras-Rentería, Erika S.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CAV3.2
DRG
KLHL1
MECHANICAL SENSITIVITY
PAIN CONTROL
SHRNA
T-TYPE CHANNEL
VOLTAGE-GATED CALCIUM CHANNEL
topic CAV3.2
DRG
KLHL1
MECHANICAL SENSITIVITY
PAIN CONTROL
SHRNA
T-TYPE CHANNEL
VOLTAGE-GATED CALCIUM CHANNEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.
Fil: Martínez Hernández, Elizabeth. Loyola University Chicago; Estados Unidos
Fil: Zeglin, Alissa. Loyola University Chicago; Estados Unidos
Fil: Almazan, Erik. Loyola University Chicago; Estados Unidos
Fil: Perissinotti, Paula Patricia. Loyola University Chicago; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: He, Yungui. University of Minnesota; Estados Unidos
Fil: Koob, Michael. University of Minnesota; Estados Unidos
Fil: Martin, Jody L.. Loyola University Chicago; Estados Unidos
Fil: Piedras-Rentería, Erika S.. Loyola University Chicago; Estados Unidos
description Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142996
Martínez Hernández, Elizabeth; Zeglin, Alissa; Almazan, Erik; Perissinotti, Paula Patricia; He, Yungui; et al.; KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain; Frontiers Media; Frontiers in Molecular Neuroscience; 12; 315; 1-2020; 1-10
1662-5099
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142996
identifier_str_mv Martínez Hernández, Elizabeth; Zeglin, Alissa; Almazan, Erik; Perissinotti, Paula Patricia; He, Yungui; et al.; KLHL1 Controls CaV3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain; Frontiers Media; Frontiers in Molecular Neuroscience; 12; 315; 1-2020; 1-10
1662-5099
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fnmol.2019.00315/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnmol.2019.00315
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847427236201758720
score 12.589754