Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos

Autores
Peterson, Victoria
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Spies, Ruben Daniel
Rufiner, Hugo Leonardo
Descripción
Una interfaz cerebro-computadora (ICC) es un sistema que provee una alternativa forma de comunicación entre el cerebro de una persona y el mundo exterior. Una manera eficiente y no invasiva de medir la actividad cerebral es mediante electroencefalografía (EEG) de superficie. Si el objetivo es deletrear palabras, suelen utilizarse ICCs basadas en los potenciales relacionados a eventos (PREs). Para fines de rehabilitación, la mayoría de las BCIs se basan en el paradigma de imaginería motora (IM). En ambos paradigmas, la detección de la intención del usuario, puede tratarse como un problema de reconocimiento de patrones binario.El análisis discriminante lineal (LDA) es un método de clasificación muy conocido en el contexto de aprendizaje supervisado. Si bien LDA generalmente resulta en buenos desempeños de clasificación manteniendo la solución sencilla, el método falla cuando el número de muestras es relativamente grande en relación a la cantidad de observaciones. Varios autores han propuesto diferentes versiones regularizadas de LDA, mostrando siempre las ventajas del uso de tales técnicas. En esta tesis se ha desarrollado una versión penalizada y regularizada de LDA, denominada discriminante ralo generalizado (GSDA). Este método realiza selección de características junto con clasificación, considerando información discriminativa a-priori. Los experimentos numéricos muestran que la utilización de GSDA supera a los métodos del estado del arte para clasificación tanto de PREs como de IM. Asimismo, se presenta un estudio de la factibilidad de un método basado en GSDA para la detección de la intención del movimiento en tiempo real.
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Interfaces Cerebro-Computadora
Análisis Discriminante Regularizado
Información Discriminativa A-Priori
Penalización Mixta
Imaginería Motora
Potenciales Evocados
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78810

id CONICETDig_325e9632b553f48c2bc53ba7ab39929e
oai_identifier_str oai:ri.conicet.gov.ar:11336/78810
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decodificación de la actividad cerebral mediante regularización con penalizantes mixtosPeterson, VictoriaInterfaces Cerebro-ComputadoraAnálisis Discriminante RegularizadoInformación Discriminativa A-PrioriPenalización MixtaImaginería MotoraPotenciales Evocadoshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Una interfaz cerebro-computadora (ICC) es un sistema que provee una alternativa forma de comunicación entre el cerebro de una persona y el mundo exterior. Una manera eficiente y no invasiva de medir la actividad cerebral es mediante electroencefalografía (EEG) de superficie. Si el objetivo es deletrear palabras, suelen utilizarse ICCs basadas en los potenciales relacionados a eventos (PREs). Para fines de rehabilitación, la mayoría de las BCIs se basan en el paradigma de imaginería motora (IM). En ambos paradigmas, la detección de la intención del usuario, puede tratarse como un problema de reconocimiento de patrones binario.El análisis discriminante lineal (LDA) es un método de clasificación muy conocido en el contexto de aprendizaje supervisado. Si bien LDA generalmente resulta en buenos desempeños de clasificación manteniendo la solución sencilla, el método falla cuando el número de muestras es relativamente grande en relación a la cantidad de observaciones. Varios autores han propuesto diferentes versiones regularizadas de LDA, mostrando siempre las ventajas del uso de tales técnicas. En esta tesis se ha desarrollado una versión penalizada y regularizada de LDA, denominada discriminante ralo generalizado (GSDA). Este método realiza selección de características junto con clasificación, considerando información discriminativa a-priori. Los experimentos numéricos muestran que la utilización de GSDA supera a los métodos del estado del arte para clasificación tanto de PREs como de IM. Asimismo, se presenta un estudio de la factibilidad de un método basado en GSDA para la detección de la intención del movimiento en tiempo real.Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaSpies, Ruben DanielRufiner, Hugo Leonardo2018-11-02info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78810Peterson, Victoria; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos; 2-11-2018CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://web10.unl.edu.ar:8080/tesis/handle/11185/1150info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:54Zoai:ri.conicet.gov.ar:11336/78810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:54.938CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
title Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
spellingShingle Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
Peterson, Victoria
Interfaces Cerebro-Computadora
Análisis Discriminante Regularizado
Información Discriminativa A-Priori
Penalización Mixta
Imaginería Motora
Potenciales Evocados
title_short Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
title_full Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
title_fullStr Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
title_full_unstemmed Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
title_sort Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos
dc.creator.none.fl_str_mv Peterson, Victoria
author Peterson, Victoria
author_facet Peterson, Victoria
author_role author
dc.contributor.none.fl_str_mv Spies, Ruben Daniel
Rufiner, Hugo Leonardo
dc.subject.none.fl_str_mv Interfaces Cerebro-Computadora
Análisis Discriminante Regularizado
Información Discriminativa A-Priori
Penalización Mixta
Imaginería Motora
Potenciales Evocados
topic Interfaces Cerebro-Computadora
Análisis Discriminante Regularizado
Información Discriminativa A-Priori
Penalización Mixta
Imaginería Motora
Potenciales Evocados
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Una interfaz cerebro-computadora (ICC) es un sistema que provee una alternativa forma de comunicación entre el cerebro de una persona y el mundo exterior. Una manera eficiente y no invasiva de medir la actividad cerebral es mediante electroencefalografía (EEG) de superficie. Si el objetivo es deletrear palabras, suelen utilizarse ICCs basadas en los potenciales relacionados a eventos (PREs). Para fines de rehabilitación, la mayoría de las BCIs se basan en el paradigma de imaginería motora (IM). En ambos paradigmas, la detección de la intención del usuario, puede tratarse como un problema de reconocimiento de patrones binario.El análisis discriminante lineal (LDA) es un método de clasificación muy conocido en el contexto de aprendizaje supervisado. Si bien LDA generalmente resulta en buenos desempeños de clasificación manteniendo la solución sencilla, el método falla cuando el número de muestras es relativamente grande en relación a la cantidad de observaciones. Varios autores han propuesto diferentes versiones regularizadas de LDA, mostrando siempre las ventajas del uso de tales técnicas. En esta tesis se ha desarrollado una versión penalizada y regularizada de LDA, denominada discriminante ralo generalizado (GSDA). Este método realiza selección de características junto con clasificación, considerando información discriminativa a-priori. Los experimentos numéricos muestran que la utilización de GSDA supera a los métodos del estado del arte para clasificación tanto de PREs como de IM. Asimismo, se presenta un estudio de la factibilidad de un método basado en GSDA para la detección de la intención del movimiento en tiempo real.
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description Una interfaz cerebro-computadora (ICC) es un sistema que provee una alternativa forma de comunicación entre el cerebro de una persona y el mundo exterior. Una manera eficiente y no invasiva de medir la actividad cerebral es mediante electroencefalografía (EEG) de superficie. Si el objetivo es deletrear palabras, suelen utilizarse ICCs basadas en los potenciales relacionados a eventos (PREs). Para fines de rehabilitación, la mayoría de las BCIs se basan en el paradigma de imaginería motora (IM). En ambos paradigmas, la detección de la intención del usuario, puede tratarse como un problema de reconocimiento de patrones binario.El análisis discriminante lineal (LDA) es un método de clasificación muy conocido en el contexto de aprendizaje supervisado. Si bien LDA generalmente resulta en buenos desempeños de clasificación manteniendo la solución sencilla, el método falla cuando el número de muestras es relativamente grande en relación a la cantidad de observaciones. Varios autores han propuesto diferentes versiones regularizadas de LDA, mostrando siempre las ventajas del uso de tales técnicas. En esta tesis se ha desarrollado una versión penalizada y regularizada de LDA, denominada discriminante ralo generalizado (GSDA). Este método realiza selección de características junto con clasificación, considerando información discriminativa a-priori. Los experimentos numéricos muestran que la utilización de GSDA supera a los métodos del estado del arte para clasificación tanto de PREs como de IM. Asimismo, se presenta un estudio de la factibilidad de un método basado en GSDA para la detección de la intención del movimiento en tiempo real.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-02
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78810
Peterson, Victoria; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos; 2-11-2018
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78810
identifier_str_mv Peterson, Victoria; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Decodificación de la actividad cerebral mediante regularización con penalizantes mixtos; 2-11-2018
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://web10.unl.edu.ar:8080/tesis/handle/11185/1150
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270023234617344
score 13.13397