Design of stable metabolic networks

Autores
Di Maggio, Jimena Andrea; Blanco, Anibal Manuel; Bandoni, Jose Alberto; Diaz Ricci, Juan Carlos; Díaz, María Soledad
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden—Meyerhof–Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balancesfor 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.
Fil: Di Maggio, Jimena Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Diaz Ricci, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Eigenvalue optimization
Metabolic network
Non-linear dynamic models
Stability
Optimal design
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42887

id CONICETDig_317cd10b46a4b5b1ea5f35a2b0b19482
oai_identifier_str oai:ri.conicet.gov.ar:11336/42887
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Design of stable metabolic networksDi Maggio, Jimena AndreaBlanco, Anibal ManuelBandoni, Jose AlbertoDiaz Ricci, Juan CarlosDíaz, María SoledadEigenvalue optimizationMetabolic networkNon-linear dynamic modelsStabilityOptimal designhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden—Meyerhof–Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balancesfor 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.Fil: Di Maggio, Jimena Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Diaz Ricci, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaWiley VCH Verlag2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42887Di Maggio, Jimena Andrea; Blanco, Anibal Manuel; Bandoni, Jose Alberto; Diaz Ricci, Juan Carlos; Díaz, María Soledad; Design of stable metabolic networks; Wiley VCH Verlag; Engineering In Life Sciences; 17; 8; 8-2017; 908-9151618-0240CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/elsc.201700065info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.201700065info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:19Zoai:ri.conicet.gov.ar:11336/42887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:19.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Design of stable metabolic networks
title Design of stable metabolic networks
spellingShingle Design of stable metabolic networks
Di Maggio, Jimena Andrea
Eigenvalue optimization
Metabolic network
Non-linear dynamic models
Stability
Optimal design
title_short Design of stable metabolic networks
title_full Design of stable metabolic networks
title_fullStr Design of stable metabolic networks
title_full_unstemmed Design of stable metabolic networks
title_sort Design of stable metabolic networks
dc.creator.none.fl_str_mv Di Maggio, Jimena Andrea
Blanco, Anibal Manuel
Bandoni, Jose Alberto
Diaz Ricci, Juan Carlos
Díaz, María Soledad
author Di Maggio, Jimena Andrea
author_facet Di Maggio, Jimena Andrea
Blanco, Anibal Manuel
Bandoni, Jose Alberto
Diaz Ricci, Juan Carlos
Díaz, María Soledad
author_role author
author2 Blanco, Anibal Manuel
Bandoni, Jose Alberto
Diaz Ricci, Juan Carlos
Díaz, María Soledad
author2_role author
author
author
author
dc.subject.none.fl_str_mv Eigenvalue optimization
Metabolic network
Non-linear dynamic models
Stability
Optimal design
topic Eigenvalue optimization
Metabolic network
Non-linear dynamic models
Stability
Optimal design
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden—Meyerhof–Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balancesfor 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.
Fil: Di Maggio, Jimena Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Diaz Ricci, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden—Meyerhof–Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balancesfor 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42887
Di Maggio, Jimena Andrea; Blanco, Anibal Manuel; Bandoni, Jose Alberto; Diaz Ricci, Juan Carlos; Díaz, María Soledad; Design of stable metabolic networks; Wiley VCH Verlag; Engineering In Life Sciences; 17; 8; 8-2017; 908-915
1618-0240
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42887
identifier_str_mv Di Maggio, Jimena Andrea; Blanco, Anibal Manuel; Bandoni, Jose Alberto; Diaz Ricci, Juan Carlos; Díaz, María Soledad; Design of stable metabolic networks; Wiley VCH Verlag; Engineering In Life Sciences; 17; 8; 8-2017; 908-915
1618-0240
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/elsc.201700065
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.201700065
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269398031663104
score 13.13397