Real-space density functional theory and time dependent density functional theory using finite/infinite element methods

Autores
Soba, Alejandro; Bea, Edgar Alejandro; Houzeaux, Guillaume; Calmet, Hadrien; Cela, José María
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a numerical approach using the finite element method to discretize the equations that allow getting a first-principles description of multi-electronic systems within DFT and TD-DFT formalisms. A strictly local polynomial function basis set is used in order to represent the entire real-space domain. Infinite elements are introduced to model the infinite external boundaries in the case of Hartree's equation. The diagonal mass matrix is obtained using a close integration rule, reducing the generalized eigenvalue problem to a standard one. This framework of electronic structure calculation is embedded in a high performance computing environment with a very good parallel behavior.
Fil: Soba, Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bea, Edgar Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Houzeaux, Guillaume. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Calmet, Hadrien. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Cela, José María. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Materia
DFT
ELECTRONIC AB INITIO METHOD
FINITE ELEMENT METHOD
INFINITE ELEMENT METHOD
TD-DFT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198789

id CONICETDig_3161552687526dd65a1d874aac9a09db
oai_identifier_str oai:ri.conicet.gov.ar:11336/198789
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real-space density functional theory and time dependent density functional theory using finite/infinite element methodsSoba, AlejandroBea, Edgar AlejandroHouzeaux, GuillaumeCalmet, HadrienCela, José MaríaDFTELECTRONIC AB INITIO METHODFINITE ELEMENT METHODINFINITE ELEMENT METHODTD-DFThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a numerical approach using the finite element method to discretize the equations that allow getting a first-principles description of multi-electronic systems within DFT and TD-DFT formalisms. A strictly local polynomial function basis set is used in order to represent the entire real-space domain. Infinite elements are introduced to model the infinite external boundaries in the case of Hartree's equation. The diagonal mass matrix is obtained using a close integration rule, reducing the generalized eigenvalue problem to a standard one. This framework of electronic structure calculation is embedded in a high performance computing environment with a very good parallel behavior.Fil: Soba, Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bea, Edgar Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Houzeaux, Guillaume. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Calmet, Hadrien. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Cela, José María. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaElsevier Science2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198789Soba, Alejandro; Bea, Edgar Alejandro; Houzeaux, Guillaume; Calmet, Hadrien; Cela, José María; Real-space density functional theory and time dependent density functional theory using finite/infinite element methods; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2581-25880010-4655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010465512002354info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cpc.2012.07.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:39Zoai:ri.conicet.gov.ar:11336/198789instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:39.844CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
title Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
spellingShingle Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
Soba, Alejandro
DFT
ELECTRONIC AB INITIO METHOD
FINITE ELEMENT METHOD
INFINITE ELEMENT METHOD
TD-DFT
title_short Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
title_full Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
title_fullStr Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
title_full_unstemmed Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
title_sort Real-space density functional theory and time dependent density functional theory using finite/infinite element methods
dc.creator.none.fl_str_mv Soba, Alejandro
Bea, Edgar Alejandro
Houzeaux, Guillaume
Calmet, Hadrien
Cela, José María
author Soba, Alejandro
author_facet Soba, Alejandro
Bea, Edgar Alejandro
Houzeaux, Guillaume
Calmet, Hadrien
Cela, José María
author_role author
author2 Bea, Edgar Alejandro
Houzeaux, Guillaume
Calmet, Hadrien
Cela, José María
author2_role author
author
author
author
dc.subject.none.fl_str_mv DFT
ELECTRONIC AB INITIO METHOD
FINITE ELEMENT METHOD
INFINITE ELEMENT METHOD
TD-DFT
topic DFT
ELECTRONIC AB INITIO METHOD
FINITE ELEMENT METHOD
INFINITE ELEMENT METHOD
TD-DFT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a numerical approach using the finite element method to discretize the equations that allow getting a first-principles description of multi-electronic systems within DFT and TD-DFT formalisms. A strictly local polynomial function basis set is used in order to represent the entire real-space domain. Infinite elements are introduced to model the infinite external boundaries in the case of Hartree's equation. The diagonal mass matrix is obtained using a close integration rule, reducing the generalized eigenvalue problem to a standard one. This framework of electronic structure calculation is embedded in a high performance computing environment with a very good parallel behavior.
Fil: Soba, Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bea, Edgar Alejandro. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Houzeaux, Guillaume. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Calmet, Hadrien. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Cela, José María. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
description We present a numerical approach using the finite element method to discretize the equations that allow getting a first-principles description of multi-electronic systems within DFT and TD-DFT formalisms. A strictly local polynomial function basis set is used in order to represent the entire real-space domain. Infinite elements are introduced to model the infinite external boundaries in the case of Hartree's equation. The diagonal mass matrix is obtained using a close integration rule, reducing the generalized eigenvalue problem to a standard one. This framework of electronic structure calculation is embedded in a high performance computing environment with a very good parallel behavior.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198789
Soba, Alejandro; Bea, Edgar Alejandro; Houzeaux, Guillaume; Calmet, Hadrien; Cela, José María; Real-space density functional theory and time dependent density functional theory using finite/infinite element methods; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2581-2588
0010-4655
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198789
identifier_str_mv Soba, Alejandro; Bea, Edgar Alejandro; Houzeaux, Guillaume; Calmet, Hadrien; Cela, José María; Real-space density functional theory and time dependent density functional theory using finite/infinite element methods; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2581-2588
0010-4655
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010465512002354
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cpc.2012.07.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082966491496448
score 13.22299