Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches
- Autores
- Goodarzi, Mohammad; Duchowicz, Pablo Román; Freitas, Matheus P.; Fernández, Francisco Marcelo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Hildebrand solubility parameter (ý) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope.
Fil: Goodarzi, Mohammad. Islamic Azad University; Irán
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
QSPR
Artificial Neural Networks
Hildebrand parameter
fullerene - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247638
Ver los metadatos del registro completo
id |
CONICETDig_3141933b3bf401d9e0be75e4ab346f83 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247638 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approachesGoodarzi, MohammadDuchowicz, Pablo RománFreitas, Matheus P.Fernández, Francisco MarceloQSPRArtificial Neural NetworksHildebrand parameterfullerenehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The Hildebrand solubility parameter (ý) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope.Fil: Goodarzi, Mohammad. Islamic Azad University; IránFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Freitas, Matheus P.. Universidad Federal de Lavras; BrasilFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Science2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247638Goodarzi, Mohammad; Duchowicz, Pablo Román; Freitas, Matheus P.; Fernández, Francisco Marcelo; Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches; Elsevier Science; Fluid Phase Equilibria; 293; 2; 6-2010; 130-1360378-3812CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378381210001007info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2010.02.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:25Zoai:ri.conicet.gov.ar:11336/247638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:25.872CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
title |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
spellingShingle |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches Goodarzi, Mohammad QSPR Artificial Neural Networks Hildebrand parameter fullerene |
title_short |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
title_full |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
title_fullStr |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
title_full_unstemmed |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
title_sort |
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches |
dc.creator.none.fl_str_mv |
Goodarzi, Mohammad Duchowicz, Pablo Román Freitas, Matheus P. Fernández, Francisco Marcelo |
author |
Goodarzi, Mohammad |
author_facet |
Goodarzi, Mohammad Duchowicz, Pablo Román Freitas, Matheus P. Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Duchowicz, Pablo Román Freitas, Matheus P. Fernández, Francisco Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QSPR Artificial Neural Networks Hildebrand parameter fullerene |
topic |
QSPR Artificial Neural Networks Hildebrand parameter fullerene |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Hildebrand solubility parameter (ý) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope. Fil: Goodarzi, Mohammad. Islamic Azad University; Irán Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The Hildebrand solubility parameter (ý) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247638 Goodarzi, Mohammad; Duchowicz, Pablo Román; Freitas, Matheus P.; Fernández, Francisco Marcelo; Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches; Elsevier Science; Fluid Phase Equilibria; 293; 2; 6-2010; 130-136 0378-3812 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247638 |
identifier_str_mv |
Goodarzi, Mohammad; Duchowicz, Pablo Román; Freitas, Matheus P.; Fernández, Francisco Marcelo; Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches; Elsevier Science; Fluid Phase Equilibria; 293; 2; 6-2010; 130-136 0378-3812 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378381210001007 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2010.02.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613530320371712 |
score |
13.070432 |