Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation
- Autores
- Miccio, Luis Alejandro; Borredon, Claudia; Casado, Ulises Martín; Phan, Anh D.; Schwartz, Gustavo Ariel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time‐consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco; España
Fil: Borredon, Claudia. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España
Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Phan, Anh D.. Phenikaa University; Vietnam
Fil: Schwartz, Gustavo Ariel. Donostia International Phisycs Center; España. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España - Materia
-
ARTIFICIAL NEURAL NETWORKS
DYNAMICS PREDICTION
POLYMERS
QSPR
SMART DESIGN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214023
Ver los metadatos del registro completo
id |
CONICETDig_30affc4f787135b1133663b9aece3466 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214023 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin EquationMiccio, Luis AlejandroBorredon, ClaudiaCasado, Ulises MartínPhan, Anh D.Schwartz, Gustavo ArielARTIFICIAL NEURAL NETWORKSDYNAMICS PREDICTIONPOLYMERSQSPRSMART DESIGNhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time‐consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco; EspañaFil: Borredon, Claudia. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Phan, Anh D.. Phenikaa University; VietnamFil: Schwartz, Gustavo Ariel. Donostia International Phisycs Center; España. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; EspañaMultidisciplinary Digital Publishing Institute2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214023Miccio, Luis Alejandro; Borredon, Claudia; Casado, Ulises Martín; Phan, Anh D.; Schwartz, Gustavo Ariel; Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation; Multidisciplinary Digital Publishing Institute; Polymers; 14; 8; 4-2022; 1-122073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/polym14081573info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/8/1573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:44Zoai:ri.conicet.gov.ar:11336/214023instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:45.004CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
title |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
spellingShingle |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation Miccio, Luis Alejandro ARTIFICIAL NEURAL NETWORKS DYNAMICS PREDICTION POLYMERS QSPR SMART DESIGN |
title_short |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
title_full |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
title_fullStr |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
title_full_unstemmed |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
title_sort |
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation |
dc.creator.none.fl_str_mv |
Miccio, Luis Alejandro Borredon, Claudia Casado, Ulises Martín Phan, Anh D. Schwartz, Gustavo Ariel |
author |
Miccio, Luis Alejandro |
author_facet |
Miccio, Luis Alejandro Borredon, Claudia Casado, Ulises Martín Phan, Anh D. Schwartz, Gustavo Ariel |
author_role |
author |
author2 |
Borredon, Claudia Casado, Ulises Martín Phan, Anh D. Schwartz, Gustavo Ariel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS DYNAMICS PREDICTION POLYMERS QSPR SMART DESIGN |
topic |
ARTIFICIAL NEURAL NETWORKS DYNAMICS PREDICTION POLYMERS QSPR SMART DESIGN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time‐consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer. Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco; España Fil: Borredon, Claudia. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Phan, Anh D.. Phenikaa University; Vietnam Fil: Schwartz, Gustavo Ariel. Donostia International Phisycs Center; España. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España |
description |
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time‐consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214023 Miccio, Luis Alejandro; Borredon, Claudia; Casado, Ulises Martín; Phan, Anh D.; Schwartz, Gustavo Ariel; Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation; Multidisciplinary Digital Publishing Institute; Polymers; 14; 8; 4-2022; 1-12 2073-4360 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214023 |
identifier_str_mv |
Miccio, Luis Alejandro; Borredon, Claudia; Casado, Ulises Martín; Phan, Anh D.; Schwartz, Gustavo Ariel; Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation; Multidisciplinary Digital Publishing Institute; Polymers; 14; 8; 4-2022; 1-12 2073-4360 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14081573 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/8/1573 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613225351479296 |
score |
13.070432 |