Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions

Autores
Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.
Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Materia
GLIAL CELLS
NEURODEGENERATION
NEUROINFLAMMATION
SYNAPTIC HOMEOSTASIS
SYNAPTIC PLASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137487

id CONICETDig_30b56e67c7f6aafef5816b0167979139
oai_identifier_str oai:ri.conicet.gov.ar:11336/137487
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directionsKorai, Sohaib AliSepe, GiovannaLuongo, LivioCragnolini, Andrea BeatrizCirillo, GiovanniGLIAL CELLSNEURODEGENERATIONNEUROINFLAMMATIONSYNAPTIC HOMEOSTASISSYNAPTIC PLASTICITYhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFrontiers Media S.A.2021-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137487Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-41662-5102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncel.2021.682524/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2021.682524info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:53Zoai:ri.conicet.gov.ar:11336/137487instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:53.371CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
title Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
spellingShingle Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
Korai, Sohaib Ali
GLIAL CELLS
NEURODEGENERATION
NEUROINFLAMMATION
SYNAPTIC HOMEOSTASIS
SYNAPTIC PLASTICITY
title_short Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
title_full Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
title_fullStr Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
title_full_unstemmed Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
title_sort Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
dc.creator.none.fl_str_mv Korai, Sohaib Ali
Sepe, Giovanna
Luongo, Livio
Cragnolini, Andrea Beatriz
Cirillo, Giovanni
author Korai, Sohaib Ali
author_facet Korai, Sohaib Ali
Sepe, Giovanna
Luongo, Livio
Cragnolini, Andrea Beatriz
Cirillo, Giovanni
author_role author
author2 Sepe, Giovanna
Luongo, Livio
Cragnolini, Andrea Beatriz
Cirillo, Giovanni
author2_role author
author
author
author
dc.subject.none.fl_str_mv GLIAL CELLS
NEURODEGENERATION
NEUROINFLAMMATION
SYNAPTIC HOMEOSTASIS
SYNAPTIC PLASTICITY
topic GLIAL CELLS
NEURODEGENERATION
NEUROINFLAMMATION
SYNAPTIC HOMEOSTASIS
SYNAPTIC PLASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.
Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
description Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137487
Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-4
1662-5102
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137487
identifier_str_mv Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-4
1662-5102
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncel.2021.682524/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2021.682524
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614040052039680
score 13.070432