Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions
- Autores
- Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.
Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; Italia
Fil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; Italia - Materia
-
GLIAL CELLS
NEURODEGENERATION
NEUROINFLAMMATION
SYNAPTIC HOMEOSTASIS
SYNAPTIC PLASTICITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137487
Ver los metadatos del registro completo
id |
CONICETDig_30b56e67c7f6aafef5816b0167979139 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137487 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directionsKorai, Sohaib AliSepe, GiovannaLuongo, LivioCragnolini, Andrea BeatrizCirillo, GiovanniGLIAL CELLSNEURODEGENERATIONNEUROINFLAMMATIONSYNAPTIC HOMEOSTASISSYNAPTIC PLASTICITYhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact.Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; ItaliaFrontiers Media S.A.2021-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137487Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-41662-5102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncel.2021.682524/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2021.682524info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:53Zoai:ri.conicet.gov.ar:11336/137487instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:53.371CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
title |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
spellingShingle |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions Korai, Sohaib Ali GLIAL CELLS NEURODEGENERATION NEUROINFLAMMATION SYNAPTIC HOMEOSTASIS SYNAPTIC PLASTICITY |
title_short |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
title_full |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
title_fullStr |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
title_full_unstemmed |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
title_sort |
Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions |
dc.creator.none.fl_str_mv |
Korai, Sohaib Ali Sepe, Giovanna Luongo, Livio Cragnolini, Andrea Beatriz Cirillo, Giovanni |
author |
Korai, Sohaib Ali |
author_facet |
Korai, Sohaib Ali Sepe, Giovanna Luongo, Livio Cragnolini, Andrea Beatriz Cirillo, Giovanni |
author_role |
author |
author2 |
Sepe, Giovanna Luongo, Livio Cragnolini, Andrea Beatriz Cirillo, Giovanni |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
GLIAL CELLS NEURODEGENERATION NEUROINFLAMMATION SYNAPTIC HOMEOSTASIS SYNAPTIC PLASTICITY |
topic |
GLIAL CELLS NEURODEGENERATION NEUROINFLAMMATION SYNAPTIC HOMEOSTASIS SYNAPTIC PLASTICITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact. Fil: Korai, Sohaib Ali. Università degli Studi della Campania "Luigi Vanvitelli"; Italia Fil: Sepe, Giovanna. Università degli Studi della Campania "Luigi Vanvitelli"; Italia Fil: Luongo, Livio. Università degli Studi della Campania "Luigi Vanvitelli"; Italia Fil: Cragnolini, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina Fil: Cirillo, Giovanni. Università degli Studi della Campania "Luigi Vanvitelli"; Italia |
description |
Understanding the biological complexity of the central nervous system (CNS) is a frontier in neuroscience. Morphological organization of the CNS represents the basis for its functional properties underlying higher brain functions; therefore, efforts are needed to boost the comprehension of the organization of the CNS, from the ultrastructural to the functional-networks level.To date, two highly integrated and interconnected cellular networks substantiate the anatomofunctional organization of CNS: neurons and non-neuronal cells, namely glial cells. Glial cells, including astrocytes, oligodendrocytes, and microglia, actively participate in many complex functions within the CNS (immunity surveillance and inflammatory response, metabolic and synaptic homeostasis, modulation of blood-brain barrier?BBB) (Volterra and Meldolesi, 2005). Moreover, interaction with the elements of the extracellular matrix (ECM), an active player for long-term plasticity and circuit maintenance, adds another level of complexity to the modern model of the synapse structure (tetrapartite synapse) (Song and Dityatev, 2018). Therefore, if on one hand glial cells allow adaptive synaptic plasticity of CNS in several physiological conditions modulating synaptic transmission, homeostasis, and neural pathways signaling, then on the other, when activated, they boost inflammatory response and perturb neuroglial interactions, synaptic circuitry, and plasticity. This new condition, called maladaptive synaptic plasticity, may represent an early stage of neuroinflammatory processes in neurodegenerative disorders (Papa et al., 2014). Recently, it has been hypothesized that the morpho-functional heterogeneity of astrocytes in different brain regions might explain the regional diversity of astrocytic response to an external injury and the selectivity of neuronal degeneration (Cragnolini et al., 2018, 2020). Therefore, the comprehension of these mechanisms is relevant for the development of targeted therapies for clinical management of neurodegenerative disorders. Only through unraveling the complex interactions between the different cell types at the synapse, we will truly understand synaptic plasticity, higher brain functions, and how perturbations of these interactions contribute to brain diseases with dramatic clinical impact. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137487 Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-4 1662-5102 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137487 |
identifier_str_mv |
Korai, Sohaib Ali; Sepe, Giovanna; Luongo, Livio; Cragnolini, Andrea Beatriz; Cirillo, Giovanni; Editorial: Glial cells, maladaptive plasticity, and neurodegeneration: Mechanisms, targeted therapies, and future directions; Frontiers Media S.A.; Frontiers in Cellular Neuroscience; 15; 682524; 30-4-2021; 1-4 1662-5102 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncel.2021.682524/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fncel.2021.682524 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614040052039680 |
score |
13.070432 |