SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot

Autores
Rapp, Markus; Kaifler, Bernd; Dörnbrack, Andreas; Gisinger, Sonja; Mixa, Tyler; Reichert, Robert; Kaifler, Natalie; Knobloch, Stefanie; Eckert, Ramona; Wildmann, Norman; Giez, Andreas; Krasauskas, Lukas; Preusse, Peter; Geldenhuys, Markus; Riese, Martin; Woiwode, Wolfgang; Friedl Vallon, Felix; Sinnhuber, Björn Martin; de la Torre, Alejandro; Alexander, Peter; Hormaechea, José Luis; Janches, Diego; Garhammer, Markus; Chau, Jorge L.; Conte, J. Federico; Hoor, Peter; Engel, Andreas
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The southern part of South America and the Antarctic peninsula are known as the world's strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry-Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.
Fil: Rapp, Markus. Ludwig Maximilians Universitat; Alemania
Fil: Kaifler, Bernd. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Dörnbrack, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Gisinger, Sonja. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Mixa, Tyler. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Reichert, Robert. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Kaifler, Natalie. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Knobloch, Stefanie. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Eckert, Ramona. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Wildmann, Norman. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Giez, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Krasauskas, Lukas. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Riese, Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Woiwode, Wolfgang. Karlsruher Institut Für Technology.; Alemania
Fil: Friedl Vallon, Felix. Karlsruher Institut Für Technology.; Alemania
Fil: Sinnhuber, Björn Martin. Karlsruher Institut fur Technologie; Alemania
Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alexander, Peter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Janches, Diego. National Aeronautics and Space Administration; Estados Unidos
Fil: Garhammer, Markus. Ludwig Maximilians Universitat; Alemania
Fil: Chau, Jorge L.. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; Alemania
Fil: Conte, J. Federico. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; Alemania
Fil: Hoor, Peter. Johannes Gutenberg Universitat Mainz; Alemania
Fil: Engel, Andreas. Goethe Universitat Frankfurt; Alemania
Materia
AIRCRAFT OBSERVATIONS
DYNAMICS
GRAVITY WAVES
MOUNTAIN WAVES
STRATOSPHERIC CIRCULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/165445

id CONICETDig_2fcdb0afac41b2d0daf1aa8d5ecda69d
oai_identifier_str oai:ri.conicet.gov.ar:11336/165445
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest HotspotRapp, MarkusKaifler, BerndDörnbrack, AndreasGisinger, SonjaMixa, TylerReichert, RobertKaifler, NatalieKnobloch, StefanieEckert, RamonaWildmann, NormanGiez, AndreasKrasauskas, LukasPreusse, PeterGeldenhuys, MarkusRiese, MartinWoiwode, WolfgangFriedl Vallon, FelixSinnhuber, Björn Martinde la Torre, AlejandroAlexander, PeterHormaechea, José LuisJanches, DiegoGarhammer, MarkusChau, Jorge L.Conte, J. FedericoHoor, PeterEngel, AndreasAIRCRAFT OBSERVATIONSDYNAMICSGRAVITY WAVESMOUNTAIN WAVESSTRATOSPHERIC CIRCULATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The southern part of South America and the Antarctic peninsula are known as the world's strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry-Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.Fil: Rapp, Markus. Ludwig Maximilians Universitat; AlemaniaFil: Kaifler, Bernd. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Dörnbrack, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Gisinger, Sonja. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Mixa, Tyler. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Reichert, Robert. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Kaifler, Natalie. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Knobloch, Stefanie. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Eckert, Ramona. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Wildmann, Norman. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Giez, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; AlemaniaFil: Krasauskas, Lukas. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Riese, Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Woiwode, Wolfgang. Karlsruher Institut Für Technology.; AlemaniaFil: Friedl Vallon, Felix. Karlsruher Institut Für Technology.; AlemaniaFil: Sinnhuber, Björn Martin. Karlsruher Institut fur Technologie; AlemaniaFil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alexander, Peter. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Janches, Diego. National Aeronautics and Space Administration; Estados UnidosFil: Garhammer, Markus. Ludwig Maximilians Universitat; AlemaniaFil: Chau, Jorge L.. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; AlemaniaFil: Conte, J. Federico. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; AlemaniaFil: Hoor, Peter. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Engel, Andreas. Goethe Universitat Frankfurt; AlemaniaAmerican Meteorological Society2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165445Rapp, Markus; Kaifler, Bernd; Dörnbrack, Andreas; Gisinger, Sonja; Mixa, Tyler; et al.; SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot; American Meteorological Society; Bulletin of The American Meteorological Society; 102; 4; 5-2021; 871-8930003-0007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/bams/102/4/BAMS-D-20-0034.1.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1175/BAMS-D-20-0034.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:05:36Zoai:ri.conicet.gov.ar:11336/165445instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:05:36.577CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
title SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
spellingShingle SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
Rapp, Markus
AIRCRAFT OBSERVATIONS
DYNAMICS
GRAVITY WAVES
MOUNTAIN WAVES
STRATOSPHERIC CIRCULATION
title_short SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
title_full SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
title_fullStr SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
title_full_unstemmed SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
title_sort SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
dc.creator.none.fl_str_mv Rapp, Markus
Kaifler, Bernd
Dörnbrack, Andreas
Gisinger, Sonja
Mixa, Tyler
Reichert, Robert
Kaifler, Natalie
Knobloch, Stefanie
Eckert, Ramona
Wildmann, Norman
Giez, Andreas
Krasauskas, Lukas
Preusse, Peter
Geldenhuys, Markus
Riese, Martin
Woiwode, Wolfgang
Friedl Vallon, Felix
Sinnhuber, Björn Martin
de la Torre, Alejandro
Alexander, Peter
Hormaechea, José Luis
Janches, Diego
Garhammer, Markus
Chau, Jorge L.
Conte, J. Federico
Hoor, Peter
Engel, Andreas
author Rapp, Markus
author_facet Rapp, Markus
Kaifler, Bernd
Dörnbrack, Andreas
Gisinger, Sonja
Mixa, Tyler
Reichert, Robert
Kaifler, Natalie
Knobloch, Stefanie
Eckert, Ramona
Wildmann, Norman
Giez, Andreas
Krasauskas, Lukas
Preusse, Peter
Geldenhuys, Markus
Riese, Martin
Woiwode, Wolfgang
Friedl Vallon, Felix
Sinnhuber, Björn Martin
de la Torre, Alejandro
Alexander, Peter
Hormaechea, José Luis
Janches, Diego
Garhammer, Markus
Chau, Jorge L.
Conte, J. Federico
Hoor, Peter
Engel, Andreas
author_role author
author2 Kaifler, Bernd
Dörnbrack, Andreas
Gisinger, Sonja
Mixa, Tyler
Reichert, Robert
Kaifler, Natalie
Knobloch, Stefanie
Eckert, Ramona
Wildmann, Norman
Giez, Andreas
Krasauskas, Lukas
Preusse, Peter
Geldenhuys, Markus
Riese, Martin
Woiwode, Wolfgang
Friedl Vallon, Felix
Sinnhuber, Björn Martin
de la Torre, Alejandro
Alexander, Peter
Hormaechea, José Luis
Janches, Diego
Garhammer, Markus
Chau, Jorge L.
Conte, J. Federico
Hoor, Peter
Engel, Andreas
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AIRCRAFT OBSERVATIONS
DYNAMICS
GRAVITY WAVES
MOUNTAIN WAVES
STRATOSPHERIC CIRCULATION
topic AIRCRAFT OBSERVATIONS
DYNAMICS
GRAVITY WAVES
MOUNTAIN WAVES
STRATOSPHERIC CIRCULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The southern part of South America and the Antarctic peninsula are known as the world's strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry-Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.
Fil: Rapp, Markus. Ludwig Maximilians Universitat; Alemania
Fil: Kaifler, Bernd. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Dörnbrack, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Gisinger, Sonja. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Mixa, Tyler. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Reichert, Robert. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Kaifler, Natalie. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Knobloch, Stefanie. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Eckert, Ramona. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Wildmann, Norman. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Giez, Andreas. Deutsches Zentrum Für Luft- Und Raumfahrt; Alemania
Fil: Krasauskas, Lukas. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Riese, Martin. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Woiwode, Wolfgang. Karlsruher Institut Für Technology.; Alemania
Fil: Friedl Vallon, Felix. Karlsruher Institut Für Technology.; Alemania
Fil: Sinnhuber, Björn Martin. Karlsruher Institut fur Technologie; Alemania
Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alexander, Peter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Janches, Diego. National Aeronautics and Space Administration; Estados Unidos
Fil: Garhammer, Markus. Ludwig Maximilians Universitat; Alemania
Fil: Chau, Jorge L.. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; Alemania
Fil: Conte, J. Federico. Leibniz Institute Of Atmospheric Physics, Kühlungsborn; Alemania
Fil: Hoor, Peter. Johannes Gutenberg Universitat Mainz; Alemania
Fil: Engel, Andreas. Goethe Universitat Frankfurt; Alemania
description The southern part of South America and the Antarctic peninsula are known as the world's strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry-Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/165445
Rapp, Markus; Kaifler, Bernd; Dörnbrack, Andreas; Gisinger, Sonja; Mixa, Tyler; et al.; SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot; American Meteorological Society; Bulletin of The American Meteorological Society; 102; 4; 5-2021; 871-893
0003-0007
CONICET Digital
CONICET
url http://hdl.handle.net/11336/165445
identifier_str_mv Rapp, Markus; Kaifler, Bernd; Dörnbrack, Andreas; Gisinger, Sonja; Mixa, Tyler; et al.; SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot; American Meteorological Society; Bulletin of The American Meteorological Society; 102; 4; 5-2021; 871-893
0003-0007
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/bams/102/4/BAMS-D-20-0034.1.xml
info:eu-repo/semantics/altIdentifier/doi/10.1175/BAMS-D-20-0034.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083198463770624
score 13.22299