Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina

Autores
Kaifler, N.; Kaifler, B.; Dörnbrack, A.; Rapp, M.; Hormaechea, José Luis; de la Torre, Alejandro
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina (54∘S, 68∘W), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.
Fil: Kaifler, N.. German Aerospace Center; Alemania
Fil: Kaifler, B.. German Aerospace Center; Alemania
Fil: Dörnbrack, A.. German Aerospace Center; Alemania
Fil: Rapp, M.. German Aerospace Center; Alemania
Fil: Hormaechea, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Laboratorio de Investigación Desarrollo y Transferencia - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Laboratorio de Investigación Desarrollo y Transferencia; Argentina
Materia
gravity waves
temperature
stratospheric circulation
momentun fluxes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125937

id CONICETDig_aa49ae22e0bbd371e6e3340bee475855
oai_identifier_str oai:ri.conicet.gov.ar:11336/125937
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, ArgentinaKaifler, N.Kaifler, B.Dörnbrack, A.Rapp, M.Hormaechea, José Luisde la Torre, Alejandrogravity wavestemperaturestratospheric circulationmomentun fluxeshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina (54∘S, 68∘W), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.Fil: Kaifler, N.. German Aerospace Center; AlemaniaFil: Kaifler, B.. German Aerospace Center; AlemaniaFil: Dörnbrack, A.. German Aerospace Center; AlemaniaFil: Rapp, M.. German Aerospace Center; AlemaniaFil: Hormaechea, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Laboratorio de Investigación Desarrollo y Transferencia - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Laboratorio de Investigación Desarrollo y Transferencia; ArgentinaNature Research2020-09-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125937Kaifler, N.; Kaifler, B.; Dörnbrack, A.; Rapp, M.; Hormaechea, José Luis; et al.; Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina; Nature Research; Scientific Reports; 10; 14529; 3-9-2020; 1-102045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-71443-7info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-71443-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:44:32Zoai:ri.conicet.gov.ar:11336/125937instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:44:32.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
title Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
spellingShingle Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
Kaifler, N.
gravity waves
temperature
stratospheric circulation
momentun fluxes
title_short Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
title_full Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
title_fullStr Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
title_full_unstemmed Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
title_sort Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina
dc.creator.none.fl_str_mv Kaifler, N.
Kaifler, B.
Dörnbrack, A.
Rapp, M.
Hormaechea, José Luis
de la Torre, Alejandro
author Kaifler, N.
author_facet Kaifler, N.
Kaifler, B.
Dörnbrack, A.
Rapp, M.
Hormaechea, José Luis
de la Torre, Alejandro
author_role author
author2 Kaifler, B.
Dörnbrack, A.
Rapp, M.
Hormaechea, José Luis
de la Torre, Alejandro
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv gravity waves
temperature
stratospheric circulation
momentun fluxes
topic gravity waves
temperature
stratospheric circulation
momentun fluxes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina (54∘S, 68∘W), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.
Fil: Kaifler, N.. German Aerospace Center; Alemania
Fil: Kaifler, B.. German Aerospace Center; Alemania
Fil: Dörnbrack, A.. German Aerospace Center; Alemania
Fil: Rapp, M.. German Aerospace Center; Alemania
Fil: Hormaechea, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Laboratorio de Investigación Desarrollo y Transferencia - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Laboratorio de Investigación Desarrollo y Transferencia; Argentina
description Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina (54∘S, 68∘W), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125937
Kaifler, N.; Kaifler, B.; Dörnbrack, A.; Rapp, M.; Hormaechea, José Luis; et al.; Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina; Nature Research; Scientific Reports; 10; 14529; 3-9-2020; 1-10
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125937
identifier_str_mv Kaifler, N.; Kaifler, B.; Dörnbrack, A.; Rapp, M.; Hormaechea, José Luis; et al.; Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina; Nature Research; Scientific Reports; 10; 14529; 3-9-2020; 1-10
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-71443-7
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-71443-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597773238140928
score 12.976206