Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method
- Autores
- Verstraete, Marcos Leonardo; Ceballos, Luis Ramon; Hente, Christian; Roccia, Bruno Antonio; Gebhardt, Cristian Guillermo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Reliable aerodynamic and aeroelastic simulations of advanced aeronautical/mechanical systems require us to predict flow-induced forces as accurately as possible. Nowadays, computational fluid dynamic techniques are quite popular, but at an overwhelming computational cost. Consequently, methods like the unsteady vortex-lattice method (UVLM) became the workhorses for many simulation environments. Then, numerous UVLM-based codes using diverse numerical schemes, enhanced by several add-ons and implemented following different programming paradigms, were available in the literature. However, there is no set of benchmark cases intended for the systematic verification of those codes relying on the UVLM. Therefore, we provide six fully reproducible benchmark cases that can be used for such an end. We also describe two in-house UVLM-based codes that are well suited for aerodynamic simulations and for being encapsulated as an aerodynamic engine within partitioned aeroelastic simulation schemes. Because both codes follow radically different implementation philosophies, these represent excellent candidates to undergo the series of benchmark cases proposed. The work is completed by providing a valuable dataset and comparison criteria to measure to what extent two or more codes are in agreement. Along this path, for very first time, we use a comparison strategy to contrast free-wake methods based on the Hausdorff distance.
Fil: Verstraete, Marcos Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ceballos, Luis Ramon. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Hente, Christian. Leibniz Universitat Hannover.; Alemania
Fil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Aerodynamic Characteristics
Vortex Filaments
Software Verification and Validation
Unsteady Aerodynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226627
Ver los metadatos del registro completo
id |
CONICETDig_1cfe5b8e26b4bc4f0553f3c5283f10eb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226627 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice MethodVerstraete, Marcos LeonardoCeballos, Luis RamonHente, ChristianRoccia, Bruno AntonioGebhardt, Cristian GuillermoAerodynamic CharacteristicsVortex FilamentsSoftware Verification and ValidationUnsteady Aerodynamicshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Reliable aerodynamic and aeroelastic simulations of advanced aeronautical/mechanical systems require us to predict flow-induced forces as accurately as possible. Nowadays, computational fluid dynamic techniques are quite popular, but at an overwhelming computational cost. Consequently, methods like the unsteady vortex-lattice method (UVLM) became the workhorses for many simulation environments. Then, numerous UVLM-based codes using diverse numerical schemes, enhanced by several add-ons and implemented following different programming paradigms, were available in the literature. However, there is no set of benchmark cases intended for the systematic verification of those codes relying on the UVLM. Therefore, we provide six fully reproducible benchmark cases that can be used for such an end. We also describe two in-house UVLM-based codes that are well suited for aerodynamic simulations and for being encapsulated as an aerodynamic engine within partitioned aeroelastic simulation schemes. Because both codes follow radically different implementation philosophies, these represent excellent candidates to undergo the series of benchmark cases proposed. The work is completed by providing a valuable dataset and comparison criteria to measure to what extent two or more codes are in agreement. Along this path, for very first time, we use a comparison strategy to contrast free-wake methods based on the Hausdorff distance.Fil: Verstraete, Marcos Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ceballos, Luis Ramon. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Hente, Christian. Leibniz Universitat Hannover.; AlemaniaFil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmer Inst Aeronaut Astronaut2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226627Verstraete, Marcos Leonardo; Ceballos, Luis Ramon; Hente, Christian; Roccia, Bruno Antonio; Gebhardt, Cristian Guillermo; Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method; Amer Inst Aeronaut Astronaut; Journal Of Aerospace Computing Information And Communication; 20; 11; 8-2023; 719-7461940-3151CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2514/1.I011184info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.I011184info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:00Zoai:ri.conicet.gov.ar:11336/226627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:00.875CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
title |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
spellingShingle |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method Verstraete, Marcos Leonardo Aerodynamic Characteristics Vortex Filaments Software Verification and Validation Unsteady Aerodynamics |
title_short |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
title_full |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
title_fullStr |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
title_full_unstemmed |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
title_sort |
Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method |
dc.creator.none.fl_str_mv |
Verstraete, Marcos Leonardo Ceballos, Luis Ramon Hente, Christian Roccia, Bruno Antonio Gebhardt, Cristian Guillermo |
author |
Verstraete, Marcos Leonardo |
author_facet |
Verstraete, Marcos Leonardo Ceballos, Luis Ramon Hente, Christian Roccia, Bruno Antonio Gebhardt, Cristian Guillermo |
author_role |
author |
author2 |
Ceballos, Luis Ramon Hente, Christian Roccia, Bruno Antonio Gebhardt, Cristian Guillermo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Aerodynamic Characteristics Vortex Filaments Software Verification and Validation Unsteady Aerodynamics |
topic |
Aerodynamic Characteristics Vortex Filaments Software Verification and Validation Unsteady Aerodynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Reliable aerodynamic and aeroelastic simulations of advanced aeronautical/mechanical systems require us to predict flow-induced forces as accurately as possible. Nowadays, computational fluid dynamic techniques are quite popular, but at an overwhelming computational cost. Consequently, methods like the unsteady vortex-lattice method (UVLM) became the workhorses for many simulation environments. Then, numerous UVLM-based codes using diverse numerical schemes, enhanced by several add-ons and implemented following different programming paradigms, were available in the literature. However, there is no set of benchmark cases intended for the systematic verification of those codes relying on the UVLM. Therefore, we provide six fully reproducible benchmark cases that can be used for such an end. We also describe two in-house UVLM-based codes that are well suited for aerodynamic simulations and for being encapsulated as an aerodynamic engine within partitioned aeroelastic simulation schemes. Because both codes follow radically different implementation philosophies, these represent excellent candidates to undergo the series of benchmark cases proposed. The work is completed by providing a valuable dataset and comparison criteria to measure to what extent two or more codes are in agreement. Along this path, for very first time, we use a comparison strategy to contrast free-wake methods based on the Hausdorff distance. Fil: Verstraete, Marcos Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Ceballos, Luis Ramon. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Hente, Christian. Leibniz Universitat Hannover.; Alemania Fil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Reliable aerodynamic and aeroelastic simulations of advanced aeronautical/mechanical systems require us to predict flow-induced forces as accurately as possible. Nowadays, computational fluid dynamic techniques are quite popular, but at an overwhelming computational cost. Consequently, methods like the unsteady vortex-lattice method (UVLM) became the workhorses for many simulation environments. Then, numerous UVLM-based codes using diverse numerical schemes, enhanced by several add-ons and implemented following different programming paradigms, were available in the literature. However, there is no set of benchmark cases intended for the systematic verification of those codes relying on the UVLM. Therefore, we provide six fully reproducible benchmark cases that can be used for such an end. We also describe two in-house UVLM-based codes that are well suited for aerodynamic simulations and for being encapsulated as an aerodynamic engine within partitioned aeroelastic simulation schemes. Because both codes follow radically different implementation philosophies, these represent excellent candidates to undergo the series of benchmark cases proposed. The work is completed by providing a valuable dataset and comparison criteria to measure to what extent two or more codes are in agreement. Along this path, for very first time, we use a comparison strategy to contrast free-wake methods based on the Hausdorff distance. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226627 Verstraete, Marcos Leonardo; Ceballos, Luis Ramon; Hente, Christian; Roccia, Bruno Antonio; Gebhardt, Cristian Guillermo; Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method; Amer Inst Aeronaut Astronaut; Journal Of Aerospace Computing Information And Communication; 20; 11; 8-2023; 719-746 1940-3151 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226627 |
identifier_str_mv |
Verstraete, Marcos Leonardo; Ceballos, Luis Ramon; Hente, Christian; Roccia, Bruno Antonio; Gebhardt, Cristian Guillermo; Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method; Amer Inst Aeronaut Astronaut; Journal Of Aerospace Computing Information And Communication; 20; 11; 8-2023; 719-746 1940-3151 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2514/1.I011184 info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.I011184 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Inst Aeronaut Astronaut |
publisher.none.fl_str_mv |
Amer Inst Aeronaut Astronaut |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268896572211200 |
score |
12.885934 |