Discrete-time switching MPC with applications to mitigate resistance in viral infections
- Autores
- Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemania - Materia
-
Model Predictive Control
Switched System
Viral Treatment
Resistance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135804
Ver los metadatos del registro completo
id |
CONICETDig_2f6a1fb056143094f46588799b4b8705 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135804 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discrete-time switching MPC with applications to mitigate resistance in viral infectionsAnderson, Alejandro LuisGonzález, Alejandro HernánFerramosca, AntonioHernandez Vargas, Esteban AbelardoModel Predictive ControlSwitched SystemViral TreatmentResistancehttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; AlemaniaElsevier2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135804Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-160482405-8963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405896320307023info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ifacol.2020.12.412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:21Zoai:ri.conicet.gov.ar:11336/135804instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:21.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
title |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
spellingShingle |
Discrete-time switching MPC with applications to mitigate resistance in viral infections Anderson, Alejandro Luis Model Predictive Control Switched System Viral Treatment Resistance |
title_short |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
title_full |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
title_fullStr |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
title_full_unstemmed |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
title_sort |
Discrete-time switching MPC with applications to mitigate resistance in viral infections |
dc.creator.none.fl_str_mv |
Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo |
author |
Anderson, Alejandro Luis |
author_facet |
Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo |
author_role |
author |
author2 |
González, Alejandro Hernán Ferramosca, Antonio Hernandez Vargas, Esteban Abelardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Switched System Viral Treatment Resistance |
topic |
Model Predictive Control Switched System Viral Treatment Resistance |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments. Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemania |
description |
Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135804 Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-16048 2405-8963 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135804 |
identifier_str_mv |
Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-16048 2405-8963 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405896320307023 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ifacol.2020.12.412 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613932599214080 |
score |
13.070432 |