Discrete-time switching MPC with applications to mitigate resistance in viral infections

Autores
Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemania
Materia
Model Predictive Control
Switched System
Viral Treatment
Resistance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135804

id CONICETDig_2f6a1fb056143094f46588799b4b8705
oai_identifier_str oai:ri.conicet.gov.ar:11336/135804
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Discrete-time switching MPC with applications to mitigate resistance in viral infectionsAnderson, Alejandro LuisGonzález, Alejandro HernánFerramosca, AntonioHernandez Vargas, Esteban AbelardoModel Predictive ControlSwitched SystemViral TreatmentResistancehttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; AlemaniaElsevier2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135804Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-160482405-8963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405896320307023info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ifacol.2020.12.412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:21Zoai:ri.conicet.gov.ar:11336/135804instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:21.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Discrete-time switching MPC with applications to mitigate resistance in viral infections
title Discrete-time switching MPC with applications to mitigate resistance in viral infections
spellingShingle Discrete-time switching MPC with applications to mitigate resistance in viral infections
Anderson, Alejandro Luis
Model Predictive Control
Switched System
Viral Treatment
Resistance
title_short Discrete-time switching MPC with applications to mitigate resistance in viral infections
title_full Discrete-time switching MPC with applications to mitigate resistance in viral infections
title_fullStr Discrete-time switching MPC with applications to mitigate resistance in viral infections
title_full_unstemmed Discrete-time switching MPC with applications to mitigate resistance in viral infections
title_sort Discrete-time switching MPC with applications to mitigate resistance in viral infections
dc.creator.none.fl_str_mv Anderson, Alejandro Luis
González, Alejandro Hernán
Ferramosca, Antonio
Hernandez Vargas, Esteban Abelardo
author Anderson, Alejandro Luis
author_facet Anderson, Alejandro Luis
González, Alejandro Hernán
Ferramosca, Antonio
Hernandez Vargas, Esteban Abelardo
author_role author
author2 González, Alejandro Hernán
Ferramosca, Antonio
Hernandez Vargas, Esteban Abelardo
author2_role author
author
author
dc.subject.none.fl_str_mv Model Predictive Control
Switched System
Viral Treatment
Resistance
topic Model Predictive Control
Switched System
Viral Treatment
Resistance
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemania
description Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135804
Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-16048
2405-8963
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135804
identifier_str_mv Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time switching MPC with applications to mitigate resistance in viral infections; Elsevier; IFAC-PapersOnLine; 53; 2; 4-2021; 16043-16048
2405-8963
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405896320307023
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ifacol.2020.12.412
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613932599214080
score 13.070432