Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation

Autores
Kandus, Alejandra; Calzetta, Esteban Adolfo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.
Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; Brasil
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
RELTIVISTIC HYDRODYNAMICS
RELATIVISTIC KINETIC THEORY
PROPAGATION SPEEDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256452

id CONICETDig_2f0d4a61f84e258fdf6cc753ea8d9f7d
oai_identifier_str oai:ri.conicet.gov.ar:11336/256452
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time ApproximationKandus, AlejandraCalzetta, Esteban AdolfoRELTIVISTIC HYDRODYNAMICSRELATIVISTIC KINETIC THEORYPROPAGATION SPEEDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; BrasilFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaMolecular Diversity Preservation International2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256452Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-251099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/11/927info:eu-repo/semantics/altIdentifier/doi/10.3390/e26110927info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:33Zoai:ri.conicet.gov.ar:11336/256452instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:34.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
title Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
spellingShingle Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
Kandus, Alejandra
RELTIVISTIC HYDRODYNAMICS
RELATIVISTIC KINETIC THEORY
PROPAGATION SPEEDS
title_short Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
title_full Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
title_fullStr Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
title_full_unstemmed Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
title_sort Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
dc.creator.none.fl_str_mv Kandus, Alejandra
Calzetta, Esteban Adolfo
author Kandus, Alejandra
author_facet Kandus, Alejandra
Calzetta, Esteban Adolfo
author_role author
author2 Calzetta, Esteban Adolfo
author2_role author
dc.subject.none.fl_str_mv RELTIVISTIC HYDRODYNAMICS
RELATIVISTIC KINETIC THEORY
PROPAGATION SPEEDS
topic RELTIVISTIC HYDRODYNAMICS
RELATIVISTIC KINETIC THEORY
PROPAGATION SPEEDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.
Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; Brasil
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256452
Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-25
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256452
identifier_str_mv Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-25
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/11/927
info:eu-repo/semantics/altIdentifier/doi/10.3390/e26110927
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980901864079360
score 12.993085