Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
- Autores
- Kandus, Alejandra; Calzetta, Esteban Adolfo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.
Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; Brasil
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
RELTIVISTIC HYDRODYNAMICS
RELATIVISTIC KINETIC THEORY
PROPAGATION SPEEDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256452
Ver los metadatos del registro completo
id |
CONICETDig_2f0d4a61f84e258fdf6cc753ea8d9f7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256452 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time ApproximationKandus, AlejandraCalzetta, Esteban AdolfoRELTIVISTIC HYDRODYNAMICSRELATIVISTIC KINETIC THEORYPROPAGATION SPEEDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; BrasilFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaMolecular Diversity Preservation International2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256452Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-251099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/11/927info:eu-repo/semantics/altIdentifier/doi/10.3390/e26110927info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:33Zoai:ri.conicet.gov.ar:11336/256452instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:34.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
title |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
spellingShingle |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation Kandus, Alejandra RELTIVISTIC HYDRODYNAMICS RELATIVISTIC KINETIC THEORY PROPAGATION SPEEDS |
title_short |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
title_full |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
title_fullStr |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
title_full_unstemmed |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
title_sort |
Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation |
dc.creator.none.fl_str_mv |
Kandus, Alejandra Calzetta, Esteban Adolfo |
author |
Kandus, Alejandra |
author_facet |
Kandus, Alejandra Calzetta, Esteban Adolfo |
author_role |
author |
author2 |
Calzetta, Esteban Adolfo |
author2_role |
author |
dc.subject.none.fl_str_mv |
RELTIVISTIC HYDRODYNAMICS RELATIVISTIC KINETIC THEORY PROPAGATION SPEEDS |
topic |
RELTIVISTIC HYDRODYNAMICS RELATIVISTIC KINETIC THEORY PROPAGATION SPEEDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system. Fil: Kandus, Alejandra. Universidade Estadual de Santa Cruz; Brasil Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
The propagation speeds of excitations are a crucial input in the modeling of interactingsystems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ = τ0(−βμ pμ)^−a, with −∞ < a < 2, where βμ = uμ/Tis the temperature vector in the Landau frame, we show that the Anderson–Witting prescription a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256452 Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-25 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256452 |
identifier_str_mv |
Kandus, Alejandra; Calzetta, Esteban Adolfo; Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation; Molecular Diversity Preservation International; Entropy; 26; 11; 10-2024; 1-25 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/11/927 info:eu-repo/semantics/altIdentifier/doi/10.3390/e26110927 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980901864079360 |
score |
12.993085 |