Steady asymptotic equilibria in conformal relativistic fluids

Autores
Calzetta, Esteban Adolfo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When one considers a shock wave in the frame where the shock is at rest, on either side one has a steady flow which converges to equilibrium away from the shock. However, hydrodynamics is unable to describe this flow if the asymptotic velocity is higher than the characteristic speed of the theory. We obtain an exact solution for the decay rate to equilibrium for a conformal fluid in kinetic theory under the relaxation time approximation, and compare it to two hydrodynamic schemes, one accounting for the second moments of the distribution function and thus equivalent, in the small deviations from equilibrium limit, to an Israel-Stewart framework, and another accounting for both second and third moments. While still having a finite characteristic speed, the second model is a significant improvement on the first.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Relativity
Hydrodynamics
Shock waves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212928

id CONICETDig_95116b3baf9d6d25182179df04f0cb91
oai_identifier_str oai:ri.conicet.gov.ar:11336/212928
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Steady asymptotic equilibria in conformal relativistic fluidsCalzetta, Esteban AdolfoRelativityHydrodynamicsShock waveshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1When one considers a shock wave in the frame where the shock is at rest, on either side one has a steady flow which converges to equilibrium away from the shock. However, hydrodynamics is unable to describe this flow if the asymptotic velocity is higher than the characteristic speed of the theory. We obtain an exact solution for the decay rate to equilibrium for a conformal fluid in kinetic theory under the relaxation time approximation, and compare it to two hydrodynamic schemes, one accounting for the second moments of the distribution function and thus equivalent, in the small deviations from equilibrium limit, to an Israel-Stewart framework, and another accounting for both second and third moments. While still having a finite characteristic speed, the second model is a significant improvement on the first.Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212928Calzetta, Esteban Adolfo; Steady asymptotic equilibria in conformal relativistic fluids; American Physical Society; Physical Review D; 105; 3; 2-2022; 1-162470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.105.036013info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.036013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:15Zoai:ri.conicet.gov.ar:11336/212928instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:15.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Steady asymptotic equilibria in conformal relativistic fluids
title Steady asymptotic equilibria in conformal relativistic fluids
spellingShingle Steady asymptotic equilibria in conformal relativistic fluids
Calzetta, Esteban Adolfo
Relativity
Hydrodynamics
Shock waves
title_short Steady asymptotic equilibria in conformal relativistic fluids
title_full Steady asymptotic equilibria in conformal relativistic fluids
title_fullStr Steady asymptotic equilibria in conformal relativistic fluids
title_full_unstemmed Steady asymptotic equilibria in conformal relativistic fluids
title_sort Steady asymptotic equilibria in conformal relativistic fluids
dc.creator.none.fl_str_mv Calzetta, Esteban Adolfo
author Calzetta, Esteban Adolfo
author_facet Calzetta, Esteban Adolfo
author_role author
dc.subject.none.fl_str_mv Relativity
Hydrodynamics
Shock waves
topic Relativity
Hydrodynamics
Shock waves
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv When one considers a shock wave in the frame where the shock is at rest, on either side one has a steady flow which converges to equilibrium away from the shock. However, hydrodynamics is unable to describe this flow if the asymptotic velocity is higher than the characteristic speed of the theory. We obtain an exact solution for the decay rate to equilibrium for a conformal fluid in kinetic theory under the relaxation time approximation, and compare it to two hydrodynamic schemes, one accounting for the second moments of the distribution function and thus equivalent, in the small deviations from equilibrium limit, to an Israel-Stewart framework, and another accounting for both second and third moments. While still having a finite characteristic speed, the second model is a significant improvement on the first.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description When one considers a shock wave in the frame where the shock is at rest, on either side one has a steady flow which converges to equilibrium away from the shock. However, hydrodynamics is unable to describe this flow if the asymptotic velocity is higher than the characteristic speed of the theory. We obtain an exact solution for the decay rate to equilibrium for a conformal fluid in kinetic theory under the relaxation time approximation, and compare it to two hydrodynamic schemes, one accounting for the second moments of the distribution function and thus equivalent, in the small deviations from equilibrium limit, to an Israel-Stewart framework, and another accounting for both second and third moments. While still having a finite characteristic speed, the second model is a significant improvement on the first.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212928
Calzetta, Esteban Adolfo; Steady asymptotic equilibria in conformal relativistic fluids; American Physical Society; Physical Review D; 105; 3; 2-2022; 1-16
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212928
identifier_str_mv Calzetta, Esteban Adolfo; Steady asymptotic equilibria in conformal relativistic fluids; American Physical Society; Physical Review D; 105; 3; 2-2022; 1-16
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.105.036013
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.036013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613603771023360
score 13.070432