Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
- Autores
- Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.
Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
Kinetic Theory
Nonequilibrium Effective Theory
Anisotropic Hydrodynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2542
Ver los metadatos del registro completo
id |
CONICETDig_e60497d2e65cbfd8c5d31a6bff0826e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2542 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closurePeralta Ramos, JeronimoCalzetta, Esteban AdolfoKinetic TheoryNonequilibrium Effective TheoryAnisotropic Hydrodynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Physical Society2013-02-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2542Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-60556-2821enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.87.034003info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.0824info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.034003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:52Zoai:ri.conicet.gov.ar:11336/2542instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:53.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
title |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
spellingShingle |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure Peralta Ramos, Jeronimo Kinetic Theory Nonequilibrium Effective Theory Anisotropic Hydrodynamics |
title_short |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
title_full |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
title_fullStr |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
title_full_unstemmed |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
title_sort |
Macroscopic approximation to relativistic kinetic theory from a nonlinear closure |
dc.creator.none.fl_str_mv |
Peralta Ramos, Jeronimo Calzetta, Esteban Adolfo |
author |
Peralta Ramos, Jeronimo |
author_facet |
Peralta Ramos, Jeronimo Calzetta, Esteban Adolfo |
author_role |
author |
author2 |
Calzetta, Esteban Adolfo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Kinetic Theory Nonequilibrium Effective Theory Anisotropic Hydrodynamics |
topic |
Kinetic Theory Nonequilibrium Effective Theory Anisotropic Hydrodynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics. Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2542 Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-6 0556-2821 |
url |
http://hdl.handle.net/11336/2542 |
identifier_str_mv |
Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-6 0556-2821 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.87.034003 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.0824 info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.034003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980613761531904 |
score |
12.993085 |