Macroscopic approximation to relativistic kinetic theory from a nonlinear closure

Autores
Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.
Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
Kinetic Theory
Nonequilibrium Effective Theory
Anisotropic Hydrodynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2542

id CONICETDig_e60497d2e65cbfd8c5d31a6bff0826e8
oai_identifier_str oai:ri.conicet.gov.ar:11336/2542
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Macroscopic approximation to relativistic kinetic theory from a nonlinear closurePeralta Ramos, JeronimoCalzetta, Esteban AdolfoKinetic TheoryNonequilibrium Effective TheoryAnisotropic Hydrodynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Physical Society2013-02-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2542Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-60556-2821enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.87.034003info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.0824info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.034003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:52Zoai:ri.conicet.gov.ar:11336/2542instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:53.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
title Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
spellingShingle Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
Peralta Ramos, Jeronimo
Kinetic Theory
Nonequilibrium Effective Theory
Anisotropic Hydrodynamics
title_short Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
title_full Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
title_fullStr Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
title_full_unstemmed Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
title_sort Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
dc.creator.none.fl_str_mv Peralta Ramos, Jeronimo
Calzetta, Esteban Adolfo
author Peralta Ramos, Jeronimo
author_facet Peralta Ramos, Jeronimo
Calzetta, Esteban Adolfo
author_role author
author2 Calzetta, Esteban Adolfo
author2_role author
dc.subject.none.fl_str_mv Kinetic Theory
Nonequilibrium Effective Theory
Anisotropic Hydrodynamics
topic Kinetic Theory
Nonequilibrium Effective Theory
Anisotropic Hydrodynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.
Fil: Peralta Ramos, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0 þ 1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2542
Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-6
0556-2821
url http://hdl.handle.net/11336/2542
identifier_str_mv Peralta Ramos, Jeronimo; Calzetta, Esteban Adolfo; Macroscopic approximation to relativistic kinetic theory from a nonlinear closure; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 87; 3; 4-2-2013; 1-6
0556-2821
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.87.034003
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.0824
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.034003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980613761531904
score 12.993085