Dynamics of thin walled composite beams: Analysis of parametric uncertainties

Autores
Piovan, Marcelo Tulio; Ramirez, Jose Miguel; Sampaio, Rubens
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article is concerned with the stochastic dynamic analysis of structures constructed with composite materials. Depending on many aspects (manufacturing process, material uncertainty, boundary conditions, etc.) real composite structures may have deviations with respect to the calculated response (or deterministic response). These aspects lead to a source of uncertainty in the structural response associated with constituent proportions, geometric parameters or other unexpected agents. Uncertainties should be considered in a structural system in order to improve the predictability of a given modeling scheme. In this study a model of shear deformable composite beams is employed as the mean model. The probabilistic model is constructed by adopting random variables for the uncertain parameters of the model. This strategy is called parametric probabilistic approach. The probability density functions of the random variables are constructed appealing to the Maximum Entropy Principle. The continuous model is discretised by finite elements and the Monte Carlo method is employed to perform the simulations, thereafter a statistical analysis is performed. Numerical studies are carried out to show the main advantages of the modeling strategies employed, as well as to quantify the propagation of the uncertainty in the dynamics of slender composite structures.
Fil: Piovan, Marcelo Tulio. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Sampaio, Rubens. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil
Materia
Uncertainty Quantification
Thin-Walled Beams
Dynamics
Parametric Probabilistic Approach
Shear Deformability
Composite Materials
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12409

id CONICETDig_2f0924b2bf91fb633d56d5d7e6081a17
oai_identifier_str oai:ri.conicet.gov.ar:11336/12409
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of thin walled composite beams: Analysis of parametric uncertaintiesPiovan, Marcelo TulioRamirez, Jose MiguelSampaio, RubensUncertainty QuantificationThin-Walled BeamsDynamicsParametric Probabilistic ApproachShear DeformabilityComposite Materialshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This article is concerned with the stochastic dynamic analysis of structures constructed with composite materials. Depending on many aspects (manufacturing process, material uncertainty, boundary conditions, etc.) real composite structures may have deviations with respect to the calculated response (or deterministic response). These aspects lead to a source of uncertainty in the structural response associated with constituent proportions, geometric parameters or other unexpected agents. Uncertainties should be considered in a structural system in order to improve the predictability of a given modeling scheme. In this study a model of shear deformable composite beams is employed as the mean model. The probabilistic model is constructed by adopting random variables for the uncertain parameters of the model. This strategy is called parametric probabilistic approach. The probability density functions of the random variables are constructed appealing to the Maximum Entropy Principle. The continuous model is discretised by finite elements and the Monte Carlo method is employed to perform the simulations, thereafter a statistical analysis is performed. Numerical studies are carried out to show the main advantages of the modeling strategies employed, as well as to quantify the propagation of the uncertainty in the dynamics of slender composite structures.Fil: Piovan, Marcelo Tulio. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; ArgentinaFil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; ArgentinaFil: Sampaio, Rubens. Pontificia Universidad Catolica Do Rio de Janeiro; BrasilElsevier2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12409Piovan, Marcelo Tulio; Ramirez, Jose Miguel; Sampaio, Rubens; Dynamics of thin walled composite beams: Analysis of parametric uncertainties; Elsevier; Composite Structures; 105; 5-2013; 14-280263-8223enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822313002055info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2013.04.039info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:37Zoai:ri.conicet.gov.ar:11336/12409instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:37.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of thin walled composite beams: Analysis of parametric uncertainties
title Dynamics of thin walled composite beams: Analysis of parametric uncertainties
spellingShingle Dynamics of thin walled composite beams: Analysis of parametric uncertainties
Piovan, Marcelo Tulio
Uncertainty Quantification
Thin-Walled Beams
Dynamics
Parametric Probabilistic Approach
Shear Deformability
Composite Materials
title_short Dynamics of thin walled composite beams: Analysis of parametric uncertainties
title_full Dynamics of thin walled composite beams: Analysis of parametric uncertainties
title_fullStr Dynamics of thin walled composite beams: Analysis of parametric uncertainties
title_full_unstemmed Dynamics of thin walled composite beams: Analysis of parametric uncertainties
title_sort Dynamics of thin walled composite beams: Analysis of parametric uncertainties
dc.creator.none.fl_str_mv Piovan, Marcelo Tulio
Ramirez, Jose Miguel
Sampaio, Rubens
author Piovan, Marcelo Tulio
author_facet Piovan, Marcelo Tulio
Ramirez, Jose Miguel
Sampaio, Rubens
author_role author
author2 Ramirez, Jose Miguel
Sampaio, Rubens
author2_role author
author
dc.subject.none.fl_str_mv Uncertainty Quantification
Thin-Walled Beams
Dynamics
Parametric Probabilistic Approach
Shear Deformability
Composite Materials
topic Uncertainty Quantification
Thin-Walled Beams
Dynamics
Parametric Probabilistic Approach
Shear Deformability
Composite Materials
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This article is concerned with the stochastic dynamic analysis of structures constructed with composite materials. Depending on many aspects (manufacturing process, material uncertainty, boundary conditions, etc.) real composite structures may have deviations with respect to the calculated response (or deterministic response). These aspects lead to a source of uncertainty in the structural response associated with constituent proportions, geometric parameters or other unexpected agents. Uncertainties should be considered in a structural system in order to improve the predictability of a given modeling scheme. In this study a model of shear deformable composite beams is employed as the mean model. The probabilistic model is constructed by adopting random variables for the uncertain parameters of the model. This strategy is called parametric probabilistic approach. The probability density functions of the random variables are constructed appealing to the Maximum Entropy Principle. The continuous model is discretised by finite elements and the Monte Carlo method is employed to perform the simulations, thereafter a statistical analysis is performed. Numerical studies are carried out to show the main advantages of the modeling strategies employed, as well as to quantify the propagation of the uncertainty in the dynamics of slender composite structures.
Fil: Piovan, Marcelo Tulio. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Sampaio, Rubens. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil
description This article is concerned with the stochastic dynamic analysis of structures constructed with composite materials. Depending on many aspects (manufacturing process, material uncertainty, boundary conditions, etc.) real composite structures may have deviations with respect to the calculated response (or deterministic response). These aspects lead to a source of uncertainty in the structural response associated with constituent proportions, geometric parameters or other unexpected agents. Uncertainties should be considered in a structural system in order to improve the predictability of a given modeling scheme. In this study a model of shear deformable composite beams is employed as the mean model. The probabilistic model is constructed by adopting random variables for the uncertain parameters of the model. This strategy is called parametric probabilistic approach. The probability density functions of the random variables are constructed appealing to the Maximum Entropy Principle. The continuous model is discretised by finite elements and the Monte Carlo method is employed to perform the simulations, thereafter a statistical analysis is performed. Numerical studies are carried out to show the main advantages of the modeling strategies employed, as well as to quantify the propagation of the uncertainty in the dynamics of slender composite structures.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12409
Piovan, Marcelo Tulio; Ramirez, Jose Miguel; Sampaio, Rubens; Dynamics of thin walled composite beams: Analysis of parametric uncertainties; Elsevier; Composite Structures; 105; 5-2013; 14-28
0263-8223
url http://hdl.handle.net/11336/12409
identifier_str_mv Piovan, Marcelo Tulio; Ramirez, Jose Miguel; Sampaio, Rubens; Dynamics of thin walled composite beams: Analysis of parametric uncertainties; Elsevier; Composite Structures; 105; 5-2013; 14-28
0263-8223
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822313002055
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2013.04.039
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614495965544448
score 13.070432