Shear-deformable thin-walled composite beams in internal and external resonance

Autores
Machado, Sebastián Pablo; Saravia, César Martín
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Shear Flexibility
Internal Resonance
Composite Material
Thin-Walled Beams
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10441

id CONICETDig_09f1fbbdcc738658db845828ecae8150
oai_identifier_str oai:ri.conicet.gov.ar:11336/10441
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shear-deformable thin-walled composite beams in internal and external resonanceMachado, Sebastián PabloSaravia, César MartínShear FlexibilityInternal ResonanceComposite MaterialThin-Walled Beamshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10441Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-390263-8223enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822312004977info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2012.10.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:00:39Zoai:ri.conicet.gov.ar:11336/10441instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:00:40.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shear-deformable thin-walled composite beams in internal and external resonance
title Shear-deformable thin-walled composite beams in internal and external resonance
spellingShingle Shear-deformable thin-walled composite beams in internal and external resonance
Machado, Sebastián Pablo
Shear Flexibility
Internal Resonance
Composite Material
Thin-Walled Beams
title_short Shear-deformable thin-walled composite beams in internal and external resonance
title_full Shear-deformable thin-walled composite beams in internal and external resonance
title_fullStr Shear-deformable thin-walled composite beams in internal and external resonance
title_full_unstemmed Shear-deformable thin-walled composite beams in internal and external resonance
title_sort Shear-deformable thin-walled composite beams in internal and external resonance
dc.creator.none.fl_str_mv Machado, Sebastián Pablo
Saravia, César Martín
author Machado, Sebastián Pablo
author_facet Machado, Sebastián Pablo
Saravia, César Martín
author_role author
author2 Saravia, César Martín
author2_role author
dc.subject.none.fl_str_mv Shear Flexibility
Internal Resonance
Composite Material
Thin-Walled Beams
topic Shear Flexibility
Internal Resonance
Composite Material
Thin-Walled Beams
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10441
Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-39
0263-8223
url http://hdl.handle.net/11336/10441
identifier_str_mv Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-39
0263-8223
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822312004977
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2012.10.018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606298626621440
score 13.001348