Shear-deformable thin-walled composite beams in internal and external resonance
- Autores
- Machado, Sebastián Pablo; Saravia, César Martín
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Shear Flexibility
Internal Resonance
Composite Material
Thin-Walled Beams - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10441
Ver los metadatos del registro completo
id |
CONICETDig_09f1fbbdcc738658db845828ecae8150 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10441 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Shear-deformable thin-walled composite beams in internal and external resonanceMachado, Sebastián PabloSaravia, César MartínShear FlexibilityInternal ResonanceComposite MaterialThin-Walled Beamshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions.Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10441Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-390263-8223enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822312004977info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2012.10.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:00:39Zoai:ri.conicet.gov.ar:11336/10441instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:00:40.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Shear-deformable thin-walled composite beams in internal and external resonance |
title |
Shear-deformable thin-walled composite beams in internal and external resonance |
spellingShingle |
Shear-deformable thin-walled composite beams in internal and external resonance Machado, Sebastián Pablo Shear Flexibility Internal Resonance Composite Material Thin-Walled Beams |
title_short |
Shear-deformable thin-walled composite beams in internal and external resonance |
title_full |
Shear-deformable thin-walled composite beams in internal and external resonance |
title_fullStr |
Shear-deformable thin-walled composite beams in internal and external resonance |
title_full_unstemmed |
Shear-deformable thin-walled composite beams in internal and external resonance |
title_sort |
Shear-deformable thin-walled composite beams in internal and external resonance |
dc.creator.none.fl_str_mv |
Machado, Sebastián Pablo Saravia, César Martín |
author |
Machado, Sebastián Pablo |
author_facet |
Machado, Sebastián Pablo Saravia, César Martín |
author_role |
author |
author2 |
Saravia, César Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Shear Flexibility Internal Resonance Composite Material Thin-Walled Beams |
topic |
Shear Flexibility Internal Resonance Composite Material Thin-Walled Beams |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions. Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of shear deformation. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of generalized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations. The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can infer in an incorrect stability prediction of the periodic solutions. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10441 Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-39 0263-8223 |
url |
http://hdl.handle.net/11336/10441 |
identifier_str_mv |
Machado, Sebastián Pablo; Saravia, César Martín; Shear-deformable thin-walled composite beams in internal and external resonance; Elsevier; Composite Structures; 97; 3-2013; 30-39 0263-8223 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263822312004977 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compstruct.2012.10.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606298626621440 |
score |
13.001348 |