Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications
- Autores
- Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Muñoz de la Peña, Arsenio; Goicoechea, Hector Casimiro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This review outlines some of the challenging aspects of applying second-order data modeling in classification issues analyzing selected examples of current applications. The main analytical platforms used for classification are briefly discussed from the application point of view, and the utilization of the generated data is illustrated. After a critical discussion of the advantages concerning the general features of the available algorithms and their underlying models, one example is presented and discussed in detail with the purpose of illustrating the high potentiality of second-order data modeling in the classification field. In addition, advanced data pre-processing tools, prior to multivariate analysis, are explained, and relevant tools are displayed. Finally, novelty prospects in multi-way classification area are presented.
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: de Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Muñoz de la Peña, Arsenio. Universidad de Extremadura; España
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina - Materia
-
CHROMATOGRAPHY
CLASSIFICATION
EXCITATION-EMISSION FLUORESCENCE MATRIX
SECOND-ORDER DATA MODELING
THREE-WAY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83077
Ver los metadatos del registro completo
id |
CONICETDig_2edc19dfee50a87090be22fbd65c5ce6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83077 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applicationsAzcarate, Silvana Marielade Araújo Gomes, AdrianoMuñoz de la Peña, ArsenioGoicoechea, Hector CasimiroCHROMATOGRAPHYCLASSIFICATIONEXCITATION-EMISSION FLUORESCENCE MATRIXSECOND-ORDER DATA MODELINGTHREE-WAYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This review outlines some of the challenging aspects of applying second-order data modeling in classification issues analyzing selected examples of current applications. The main analytical platforms used for classification are briefly discussed from the application point of view, and the utilization of the generated data is illustrated. After a critical discussion of the advantages concerning the general features of the available algorithms and their underlying models, one example is presented and discussed in detail with the purpose of illustrating the high potentiality of second-order data modeling in the classification field. In addition, advanced data pre-processing tools, prior to multivariate analysis, are explained, and relevant tools are displayed. Finally, novelty prospects in multi-way classification area are presented.Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: de Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; BrasilFil: Muñoz de la Peña, Arsenio. Universidad de Extremadura; EspañaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaElsevier2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83077Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Muñoz de la Peña, Arsenio; Goicoechea, Hector Casimiro; Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications; Elsevier; Trac-Trends In Analytical Chemistry; 107; 10-2018; 151-1680165-9936CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165993618302322info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trac.2018.07.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:59Zoai:ri.conicet.gov.ar:11336/83077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:59.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
title |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
spellingShingle |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications Azcarate, Silvana Mariela CHROMATOGRAPHY CLASSIFICATION EXCITATION-EMISSION FLUORESCENCE MATRIX SECOND-ORDER DATA MODELING THREE-WAY |
title_short |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
title_full |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
title_fullStr |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
title_full_unstemmed |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
title_sort |
Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications |
dc.creator.none.fl_str_mv |
Azcarate, Silvana Mariela de Araújo Gomes, Adriano Muñoz de la Peña, Arsenio Goicoechea, Hector Casimiro |
author |
Azcarate, Silvana Mariela |
author_facet |
Azcarate, Silvana Mariela de Araújo Gomes, Adriano Muñoz de la Peña, Arsenio Goicoechea, Hector Casimiro |
author_role |
author |
author2 |
de Araújo Gomes, Adriano Muñoz de la Peña, Arsenio Goicoechea, Hector Casimiro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CHROMATOGRAPHY CLASSIFICATION EXCITATION-EMISSION FLUORESCENCE MATRIX SECOND-ORDER DATA MODELING THREE-WAY |
topic |
CHROMATOGRAPHY CLASSIFICATION EXCITATION-EMISSION FLUORESCENCE MATRIX SECOND-ORDER DATA MODELING THREE-WAY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This review outlines some of the challenging aspects of applying second-order data modeling in classification issues analyzing selected examples of current applications. The main analytical platforms used for classification are briefly discussed from the application point of view, and the utilization of the generated data is illustrated. After a critical discussion of the advantages concerning the general features of the available algorithms and their underlying models, one example is presented and discussed in detail with the purpose of illustrating the high potentiality of second-order data modeling in the classification field. In addition, advanced data pre-processing tools, prior to multivariate analysis, are explained, and relevant tools are displayed. Finally, novelty prospects in multi-way classification area are presented. Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina Fil: de Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil Fil: Muñoz de la Peña, Arsenio. Universidad de Extremadura; España Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina |
description |
This review outlines some of the challenging aspects of applying second-order data modeling in classification issues analyzing selected examples of current applications. The main analytical platforms used for classification are briefly discussed from the application point of view, and the utilization of the generated data is illustrated. After a critical discussion of the advantages concerning the general features of the available algorithms and their underlying models, one example is presented and discussed in detail with the purpose of illustrating the high potentiality of second-order data modeling in the classification field. In addition, advanced data pre-processing tools, prior to multivariate analysis, are explained, and relevant tools are displayed. Finally, novelty prospects in multi-way classification area are presented. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83077 Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Muñoz de la Peña, Arsenio; Goicoechea, Hector Casimiro; Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications; Elsevier; Trac-Trends In Analytical Chemistry; 107; 10-2018; 151-168 0165-9936 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83077 |
identifier_str_mv |
Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Muñoz de la Peña, Arsenio; Goicoechea, Hector Casimiro; Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications; Elsevier; Trac-Trends In Analytical Chemistry; 107; 10-2018; 151-168 0165-9936 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165993618302322 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trac.2018.07.022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613232794271744 |
score |
13.070432 |