Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3

Autores
Vila Fungueiriño, J. M.; Bui, Cong Tinh; Rivas Murias, B.; Winkler, Elin Lilian; Milano, Julian; Santiso, José; Rivadulla, F.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The suitability of a particular material for use in magnetic devices is determined by the process of magnetization reversal/relaxation, which in turn depends on the magnetic anisotropy. Therefore, designing new ways to control magnetic anisotropy in technologically important materials is highly desirable. Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) is determined by the proximity to thermodynamic equilibrium conditions during growth. We performed a series of x-ray diffraction and ferromagnetic resonance (FMR) experiments in two different sets of samples: the first corresponds to LSMO thin-films deposited under tensile strain on (0 0 1) SrTiO3 by pulsed laser deposition (PLD; far from thermodynamic equilibrium); the second were deposited by a slow chemical solution deposition (CSD) method, under quasi-equilibrium conditions. Thin films prepared by PLD show fourfold in-plane magnetic anisotropy, with an overimposed uniaxial term. However, the uniaxial anisotropy is completely suppressed in the CSD films. This change is due to a different rotation pattern of MnO6 octahedra to accommodate epitaxial strain, which depends not only on the amplitude of tensile stress imposed by the STO substrate, but also on the growth conditions. Our results demonstrate that the nature and magnitude of the magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during thin-film deposition.
Fil: Vila Fungueiriño, J. M.. Universidad de Santiago de Compostela; España
Fil: Bui, Cong Tinh. Universidad de Santiago de Compostela; España
Fil: Rivas Murias, B.. Universidad de Santiago de Compostela; España
Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Milano, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Santiso, José. Universitat Autònoma de Barcelona; España. Consejo Superior de Investigaciones Científicas; España
Fil: Rivadulla, F.. Universidad de Santiago de Compostela; España
Materia
FERROMAGNETIC RESONANCE
MAGNETIC ANISOTROPY
THIN-FILM DEPOSITION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/149897

id CONICETDig_2e7289214d274f481c567be8c12e3f22
oai_identifier_str oai:ri.conicet.gov.ar:11336/149897
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3Vila Fungueiriño, J. M.Bui, Cong TinhRivas Murias, B.Winkler, Elin LilianMilano, JulianSantiso, JoséRivadulla, F.FERROMAGNETIC RESONANCEMAGNETIC ANISOTROPYTHIN-FILM DEPOSITIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The suitability of a particular material for use in magnetic devices is determined by the process of magnetization reversal/relaxation, which in turn depends on the magnetic anisotropy. Therefore, designing new ways to control magnetic anisotropy in technologically important materials is highly desirable. Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) is determined by the proximity to thermodynamic equilibrium conditions during growth. We performed a series of x-ray diffraction and ferromagnetic resonance (FMR) experiments in two different sets of samples: the first corresponds to LSMO thin-films deposited under tensile strain on (0 0 1) SrTiO3 by pulsed laser deposition (PLD; far from thermodynamic equilibrium); the second were deposited by a slow chemical solution deposition (CSD) method, under quasi-equilibrium conditions. Thin films prepared by PLD show fourfold in-plane magnetic anisotropy, with an overimposed uniaxial term. However, the uniaxial anisotropy is completely suppressed in the CSD films. This change is due to a different rotation pattern of MnO6 octahedra to accommodate epitaxial strain, which depends not only on the amplitude of tensile stress imposed by the STO substrate, but also on the growth conditions. Our results demonstrate that the nature and magnitude of the magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during thin-film deposition.Fil: Vila Fungueiriño, J. M.. Universidad de Santiago de Compostela; EspañaFil: Bui, Cong Tinh. Universidad de Santiago de Compostela; EspañaFil: Rivas Murias, B.. Universidad de Santiago de Compostela; EspañaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Milano, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Santiso, José. Universitat Autònoma de Barcelona; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Rivadulla, F.. Universidad de Santiago de Compostela; EspañaIOP Publishing2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149897Vila Fungueiriño, J. M.; Bui, Cong Tinh; Rivas Murias, B.; Winkler, Elin Lilian; Milano, Julian; et al.; Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3; IOP Publishing; Journal of Physics D: Applied Physics; 49; 31; 7-2016; 1-60022-3727CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0022-3727/49/31/315001info:eu-repo/semantics/altIdentifier/doi/10.1088/0022-3727/49/31/315001info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1603.01127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:18Zoai:ri.conicet.gov.ar:11336/149897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
title Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
spellingShingle Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
Vila Fungueiriño, J. M.
FERROMAGNETIC RESONANCE
MAGNETIC ANISOTROPY
THIN-FILM DEPOSITION
title_short Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
title_full Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
title_fullStr Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
title_full_unstemmed Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
title_sort Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3
dc.creator.none.fl_str_mv Vila Fungueiriño, J. M.
Bui, Cong Tinh
Rivas Murias, B.
Winkler, Elin Lilian
Milano, Julian
Santiso, José
Rivadulla, F.
author Vila Fungueiriño, J. M.
author_facet Vila Fungueiriño, J. M.
Bui, Cong Tinh
Rivas Murias, B.
Winkler, Elin Lilian
Milano, Julian
Santiso, José
Rivadulla, F.
author_role author
author2 Bui, Cong Tinh
Rivas Murias, B.
Winkler, Elin Lilian
Milano, Julian
Santiso, José
Rivadulla, F.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv FERROMAGNETIC RESONANCE
MAGNETIC ANISOTROPY
THIN-FILM DEPOSITION
topic FERROMAGNETIC RESONANCE
MAGNETIC ANISOTROPY
THIN-FILM DEPOSITION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The suitability of a particular material for use in magnetic devices is determined by the process of magnetization reversal/relaxation, which in turn depends on the magnetic anisotropy. Therefore, designing new ways to control magnetic anisotropy in technologically important materials is highly desirable. Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) is determined by the proximity to thermodynamic equilibrium conditions during growth. We performed a series of x-ray diffraction and ferromagnetic resonance (FMR) experiments in two different sets of samples: the first corresponds to LSMO thin-films deposited under tensile strain on (0 0 1) SrTiO3 by pulsed laser deposition (PLD; far from thermodynamic equilibrium); the second were deposited by a slow chemical solution deposition (CSD) method, under quasi-equilibrium conditions. Thin films prepared by PLD show fourfold in-plane magnetic anisotropy, with an overimposed uniaxial term. However, the uniaxial anisotropy is completely suppressed in the CSD films. This change is due to a different rotation pattern of MnO6 octahedra to accommodate epitaxial strain, which depends not only on the amplitude of tensile stress imposed by the STO substrate, but also on the growth conditions. Our results demonstrate that the nature and magnitude of the magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during thin-film deposition.
Fil: Vila Fungueiriño, J. M.. Universidad de Santiago de Compostela; España
Fil: Bui, Cong Tinh. Universidad de Santiago de Compostela; España
Fil: Rivas Murias, B.. Universidad de Santiago de Compostela; España
Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Milano, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Santiso, José. Universitat Autònoma de Barcelona; España. Consejo Superior de Investigaciones Científicas; España
Fil: Rivadulla, F.. Universidad de Santiago de Compostela; España
description The suitability of a particular material for use in magnetic devices is determined by the process of magnetization reversal/relaxation, which in turn depends on the magnetic anisotropy. Therefore, designing new ways to control magnetic anisotropy in technologically important materials is highly desirable. Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) is determined by the proximity to thermodynamic equilibrium conditions during growth. We performed a series of x-ray diffraction and ferromagnetic resonance (FMR) experiments in two different sets of samples: the first corresponds to LSMO thin-films deposited under tensile strain on (0 0 1) SrTiO3 by pulsed laser deposition (PLD; far from thermodynamic equilibrium); the second were deposited by a slow chemical solution deposition (CSD) method, under quasi-equilibrium conditions. Thin films prepared by PLD show fourfold in-plane magnetic anisotropy, with an overimposed uniaxial term. However, the uniaxial anisotropy is completely suppressed in the CSD films. This change is due to a different rotation pattern of MnO6 octahedra to accommodate epitaxial strain, which depends not only on the amplitude of tensile stress imposed by the STO substrate, but also on the growth conditions. Our results demonstrate that the nature and magnitude of the magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during thin-film deposition.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/149897
Vila Fungueiriño, J. M.; Bui, Cong Tinh; Rivas Murias, B.; Winkler, Elin Lilian; Milano, Julian; et al.; Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3; IOP Publishing; Journal of Physics D: Applied Physics; 49; 31; 7-2016; 1-6
0022-3727
CONICET Digital
CONICET
url http://hdl.handle.net/11336/149897
identifier_str_mv Vila Fungueiriño, J. M.; Bui, Cong Tinh; Rivas Murias, B.; Winkler, Elin Lilian; Milano, Julian; et al.; Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3; IOP Publishing; Journal of Physics D: Applied Physics; 49; 31; 7-2016; 1-6
0022-3727
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0022-3727/49/31/315001
info:eu-repo/semantics/altIdentifier/doi/10.1088/0022-3727/49/31/315001
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1603.01127
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270113650180096
score 13.13397