Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)

Autores
Mokhtari, Abdelhamid; Blancato, Victor Sebastian; Repizo, Guillermo Daniel; Henry, Céline; Pikis, Andreas; Bourand, Alexa; Alvarez, Maria de Fatima; Immel, Stefan; Mechakra Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-a-glucosidase, which in B. subtilis hydrolyses maltose 6-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phosphosubstrates revealed that MapP preferably dephosphorylates disaccharides containing an O-aglycosyl linkage
Fil: Mokhtari, Abdelhamid. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; Argelia
Fil: Blancato, Victor Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Repizo, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Henry, Céline. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
Fil: Pikis, Andreas. Center for Drug Evaluation and Research. Food and Drug Administration; Estados Unidos
Fil: Bourand, Alexa. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
Fil: Alvarez, Maria de Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Immel, Stefan. Technische Universität Darmstad. Institut für Organische Chemie; Alemania
Fil: Mechakra Maza, Aicha. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; Argelia
Fil: Hartke, Axel. Universite de Caen Basse Normandie; Francia
Fil: Thompson, John. National Institutes of Health. Laboratory of Cell and Developmental Biology. Microbial Biochemistry and Genetics Section; Estados Unidos
Fil: Magni, Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Deutscher, Josef. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
Materia
Maltose Metabolism
Enterococcus Faecalis
Maltose 6-Phosphate Phosphatase (Mapp)
Lactic Acid Bacterium
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4874

id CONICETDig_2dabfc9fad639c035b0b9e46064652e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/4874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)Mokhtari, AbdelhamidBlancato, Victor SebastianRepizo, Guillermo DanielHenry, CélinePikis, AndreasBourand, AlexaAlvarez, Maria de FatimaImmel, StefanMechakra Maza, AichaHartke, AxelThompson, JohnMagni, ChristianDeutscher, JosefMaltose MetabolismEnterococcus FaecalisMaltose 6-Phosphate Phosphatase (Mapp)Lactic Acid Bacteriumhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-a-glucosidase, which in B. subtilis hydrolyses maltose 6-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phosphosubstrates revealed that MapP preferably dephosphorylates disaccharides containing an O-aglycosyl linkageFil: Mokhtari, Abdelhamid. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; ArgeliaFil: Blancato, Victor Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Repizo, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Henry, Céline. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; FranciaFil: Pikis, Andreas. Center for Drug Evaluation and Research. Food and Drug Administration; Estados UnidosFil: Bourand, Alexa. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; FranciaFil: Alvarez, Maria de Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Immel, Stefan. Technische Universität Darmstad. Institut für Organische Chemie; AlemaniaFil: Mechakra Maza, Aicha. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; ArgeliaFil: Hartke, Axel. Universite de Caen Basse Normandie; FranciaFil: Thompson, John. National Institutes of Health. Laboratory of Cell and Developmental Biology. Microbial Biochemistry and Genetics Section; Estados UnidosFil: Magni, Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Deutscher, Josef. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; FranciaWiley2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4874Mokhtari, Abdelhamid; Blancato, Victor Sebastian; Repizo, Guillermo Daniel; Henry, Céline; Pikis, Andreas; et al.; Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP); Wiley; Molecular Microbiology; 88; 2; 4-2013; 234-2530950-382Xenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/mmi.12183/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1111/mmi.12183info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/pmid/PMC3633101info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633101/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:46Zoai:ri.conicet.gov.ar:11336/4874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:46.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
title Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
spellingShingle Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
Mokhtari, Abdelhamid
Maltose Metabolism
Enterococcus Faecalis
Maltose 6-Phosphate Phosphatase (Mapp)
Lactic Acid Bacterium
title_short Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
title_full Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
title_fullStr Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
title_full_unstemmed Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
title_sort Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP)
dc.creator.none.fl_str_mv Mokhtari, Abdelhamid
Blancato, Victor Sebastian
Repizo, Guillermo Daniel
Henry, Céline
Pikis, Andreas
Bourand, Alexa
Alvarez, Maria de Fatima
Immel, Stefan
Mechakra Maza, Aicha
Hartke, Axel
Thompson, John
Magni, Christian
Deutscher, Josef
author Mokhtari, Abdelhamid
author_facet Mokhtari, Abdelhamid
Blancato, Victor Sebastian
Repizo, Guillermo Daniel
Henry, Céline
Pikis, Andreas
Bourand, Alexa
Alvarez, Maria de Fatima
Immel, Stefan
Mechakra Maza, Aicha
Hartke, Axel
Thompson, John
Magni, Christian
Deutscher, Josef
author_role author
author2 Blancato, Victor Sebastian
Repizo, Guillermo Daniel
Henry, Céline
Pikis, Andreas
Bourand, Alexa
Alvarez, Maria de Fatima
Immel, Stefan
Mechakra Maza, Aicha
Hartke, Axel
Thompson, John
Magni, Christian
Deutscher, Josef
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Maltose Metabolism
Enterococcus Faecalis
Maltose 6-Phosphate Phosphatase (Mapp)
Lactic Acid Bacterium
topic Maltose Metabolism
Enterococcus Faecalis
Maltose 6-Phosphate Phosphatase (Mapp)
Lactic Acid Bacterium
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-a-glucosidase, which in B. subtilis hydrolyses maltose 6-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phosphosubstrates revealed that MapP preferably dephosphorylates disaccharides containing an O-aglycosyl linkage
Fil: Mokhtari, Abdelhamid. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; Argelia
Fil: Blancato, Victor Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Repizo, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Henry, Céline. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
Fil: Pikis, Andreas. Center for Drug Evaluation and Research. Food and Drug Administration; Estados Unidos
Fil: Bourand, Alexa. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
Fil: Alvarez, Maria de Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Immel, Stefan. Technische Universität Darmstad. Institut für Organische Chemie; Alemania
Fil: Mechakra Maza, Aicha. University Mentouri. Faculty of Natural Science and Life. Department of Biochemistry-Microbiology. Laboratory of Environmental Biology; Argelia
Fil: Hartke, Axel. Universite de Caen Basse Normandie; Francia
Fil: Thompson, John. National Institutes of Health. Laboratory of Cell and Developmental Biology. Microbial Biochemistry and Genetics Section; Estados Unidos
Fil: Magni, Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Deutscher, Josef. Institut National de la Recherche Agronomique. Microbiologie de l’Alimentation au Service de la Santé Humaine; Francia
description Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-a-glucosidase, which in B. subtilis hydrolyses maltose 6-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phosphosubstrates revealed that MapP preferably dephosphorylates disaccharides containing an O-aglycosyl linkage
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4874
Mokhtari, Abdelhamid; Blancato, Victor Sebastian; Repizo, Guillermo Daniel; Henry, Céline; Pikis, Andreas; et al.; Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP); Wiley; Molecular Microbiology; 88; 2; 4-2013; 234-253
0950-382X
url http://hdl.handle.net/11336/4874
identifier_str_mv Mokhtari, Abdelhamid; Blancato, Victor Sebastian; Repizo, Guillermo Daniel; Henry, Céline; Pikis, Andreas; et al.; Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6-P phosphatase (MapP); Wiley; Molecular Microbiology; 88; 2; 4-2013; 234-253
0950-382X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/mmi.12183/abstract
info:eu-repo/semantics/altIdentifier/doi/10.1111/mmi.12183
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/pmid/PMC3633101
info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633101/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268687373959168
score 13.13397