Multiobjective Optimization Model for Wind Power Allocation
- Autores
- Alemany, Juan Manuel; Magnago, Fernando; Lombardi, Pio; Arendarski, Bartlomiej; Komarnicki, Przemyslaw
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented -constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.
Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lombardi, Pio. IFF Fraunhofer; Alemania
Fil: Arendarski, Bartlomiej. IFF Fraunhofer; Alemania
Fil: Komarnicki, Przemyslaw. IFF Fraunhofer; Alemania - Materia
-
ENERGIA EOLICA
OPTIMIZACION MULTIOBJETIVO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72367
Ver los metadatos del registro completo
id |
CONICETDig_2d6e6afa41dbe160faecad4ee2875fb7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72367 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiobjective Optimization Model for Wind Power AllocationAlemany, Juan ManuelMagnago, FernandoLombardi, PioArendarski, BartlomiejKomarnicki, PrzemyslawENERGIA EOLICAOPTIMIZACION MULTIOBJETIVOhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented -constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lombardi, Pio. IFF Fraunhofer; AlemaniaFil: Arendarski, Bartlomiej. IFF Fraunhofer; AlemaniaFil: Komarnicki, Przemyslaw. IFF Fraunhofer; AlemaniaHindawi Publishing Corporation2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72367Alemany, Juan Manuel; Magnago, Fernando; Lombardi, Pio; Arendarski, Bartlomiej; Komarnicki, Przemyslaw; Multiobjective Optimization Model for Wind Power Allocation; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 3-2017; 1-10; 18769341024-123X1563-5147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2017/1876934info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/1876934/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:34Zoai:ri.conicet.gov.ar:11336/72367instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:34.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiobjective Optimization Model for Wind Power Allocation |
title |
Multiobjective Optimization Model for Wind Power Allocation |
spellingShingle |
Multiobjective Optimization Model for Wind Power Allocation Alemany, Juan Manuel ENERGIA EOLICA OPTIMIZACION MULTIOBJETIVO |
title_short |
Multiobjective Optimization Model for Wind Power Allocation |
title_full |
Multiobjective Optimization Model for Wind Power Allocation |
title_fullStr |
Multiobjective Optimization Model for Wind Power Allocation |
title_full_unstemmed |
Multiobjective Optimization Model for Wind Power Allocation |
title_sort |
Multiobjective Optimization Model for Wind Power Allocation |
dc.creator.none.fl_str_mv |
Alemany, Juan Manuel Magnago, Fernando Lombardi, Pio Arendarski, Bartlomiej Komarnicki, Przemyslaw |
author |
Alemany, Juan Manuel |
author_facet |
Alemany, Juan Manuel Magnago, Fernando Lombardi, Pio Arendarski, Bartlomiej Komarnicki, Przemyslaw |
author_role |
author |
author2 |
Magnago, Fernando Lombardi, Pio Arendarski, Bartlomiej Komarnicki, Przemyslaw |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ENERGIA EOLICA OPTIMIZACION MULTIOBJETIVO |
topic |
ENERGIA EOLICA OPTIMIZACION MULTIOBJETIVO |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented -constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process. Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lombardi, Pio. IFF Fraunhofer; Alemania Fil: Arendarski, Bartlomiej. IFF Fraunhofer; Alemania Fil: Komarnicki, Przemyslaw. IFF Fraunhofer; Alemania |
description |
There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented -constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72367 Alemany, Juan Manuel; Magnago, Fernando; Lombardi, Pio; Arendarski, Bartlomiej; Komarnicki, Przemyslaw; Multiobjective Optimization Model for Wind Power Allocation; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 3-2017; 1-10; 1876934 1024-123X 1563-5147 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72367 |
identifier_str_mv |
Alemany, Juan Manuel; Magnago, Fernando; Lombardi, Pio; Arendarski, Bartlomiej; Komarnicki, Przemyslaw; Multiobjective Optimization Model for Wind Power Allocation; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2017; 3-2017; 1-10; 1876934 1024-123X 1563-5147 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2017/1876934 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2017/1876934/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612993895104512 |
score |
13.070432 |