One-body entanglement as a quantum resource in fermionic systems

Autores
Gigena, Nicolás; Di Tullio, Marco; Rossignoli, Raúl Dante
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure Nfermion state, from which the SPDM [together with the (N − 1)-body density matrix] can be derived. It is then proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.
Materia
Ciencias Físicas
Quantum entanglement
Fermionic systems
Quantum resource theories
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/10965

id CICBA_945a85e58a3c999e5812a276d7e488b1
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/10965
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling One-body entanglement as a quantum resource in fermionic systemsGigena, NicolásDi Tullio, MarcoRossignoli, Raúl DanteCiencias FísicasQuantum entanglementFermionic systemsQuantum resource theoriesWe show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure Nfermion state, from which the SPDM [together with the (N − 1)-body density matrix] can be derived. It is then proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.2020-10-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/10965enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:05Zoai:digital.cic.gba.gob.ar:11746/10965Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:05.859CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv One-body entanglement as a quantum resource in fermionic systems
title One-body entanglement as a quantum resource in fermionic systems
spellingShingle One-body entanglement as a quantum resource in fermionic systems
Gigena, Nicolás
Ciencias Físicas
Quantum entanglement
Fermionic systems
Quantum resource theories
title_short One-body entanglement as a quantum resource in fermionic systems
title_full One-body entanglement as a quantum resource in fermionic systems
title_fullStr One-body entanglement as a quantum resource in fermionic systems
title_full_unstemmed One-body entanglement as a quantum resource in fermionic systems
title_sort One-body entanglement as a quantum resource in fermionic systems
dc.creator.none.fl_str_mv Gigena, Nicolás
Di Tullio, Marco
Rossignoli, Raúl Dante
author Gigena, Nicolás
author_facet Gigena, Nicolás
Di Tullio, Marco
Rossignoli, Raúl Dante
author_role author
author2 Di Tullio, Marco
Rossignoli, Raúl Dante
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Físicas
Quantum entanglement
Fermionic systems
Quantum resource theories
topic Ciencias Físicas
Quantum entanglement
Fermionic systems
Quantum resource theories
dc.description.none.fl_txt_mv We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure Nfermion state, from which the SPDM [together with the (N − 1)-body density matrix] can be derived. It is then proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.
description We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure Nfermion state, from which the SPDM [together with the (N − 1)-body density matrix] can be derived. It is then proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/10965
url https://digital.cic.gba.gob.ar/handle/11746/10965
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618599468105728
score 13.070432