Methodology to assess phasor measurement unit in the estimation of dynamic line rating

Autores
Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; ólason, Daníel Leó
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.
Fil: Alvarez, David L.. Universidad Nacional de Colombia; Colombia
Fil: Silva, F. Faria da. Aalborg University; Dinamarca
Fil: Bak, Claus Leth. Aalborg University; Dinamarca
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Rosero, Javier A.. Universidad Nacional de Colombia; Colombia
Fil: ólason, Daníel Leó. Landsnet; Islandia
Materia
phasor measurement unit
dynamic line rating
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88034

id CONICETDig_2cbfbe9053387f6f166168f1a06f36a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/88034
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Methodology to assess phasor measurement unit in the estimation of dynamic line ratingAlvarez, David L.Silva, F. Faria daBak, Claus LethMombello, Enrique EstebanRosero, Javier A.ólason, Daníel Leóphasor measurement unitdynamic line ratinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.Fil: Alvarez, David L.. Universidad Nacional de Colombia; ColombiaFil: Silva, F. Faria da. Aalborg University; DinamarcaFil: Bak, Claus Leth. Aalborg University; DinamarcaFil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Rosero, Javier A.. Universidad Nacional de Colombia; ColombiaFil: ólason, Daníel Leó. Landsnet; IslandiaInstitution of Engineering and Technology2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88034Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-38281751-86871751-8695CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2017.0661info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8444542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:19Zoai:ri.conicet.gov.ar:11336/88034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:19.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Methodology to assess phasor measurement unit in the estimation of dynamic line rating
title Methodology to assess phasor measurement unit in the estimation of dynamic line rating
spellingShingle Methodology to assess phasor measurement unit in the estimation of dynamic line rating
Alvarez, David L.
phasor measurement unit
dynamic line rating
title_short Methodology to assess phasor measurement unit in the estimation of dynamic line rating
title_full Methodology to assess phasor measurement unit in the estimation of dynamic line rating
title_fullStr Methodology to assess phasor measurement unit in the estimation of dynamic line rating
title_full_unstemmed Methodology to assess phasor measurement unit in the estimation of dynamic line rating
title_sort Methodology to assess phasor measurement unit in the estimation of dynamic line rating
dc.creator.none.fl_str_mv Alvarez, David L.
Silva, F. Faria da
Bak, Claus Leth
Mombello, Enrique Esteban
Rosero, Javier A.
ólason, Daníel Leó
author Alvarez, David L.
author_facet Alvarez, David L.
Silva, F. Faria da
Bak, Claus Leth
Mombello, Enrique Esteban
Rosero, Javier A.
ólason, Daníel Leó
author_role author
author2 Silva, F. Faria da
Bak, Claus Leth
Mombello, Enrique Esteban
Rosero, Javier A.
ólason, Daníel Leó
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv phasor measurement unit
dynamic line rating
topic phasor measurement unit
dynamic line rating
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.
Fil: Alvarez, David L.. Universidad Nacional de Colombia; Colombia
Fil: Silva, F. Faria da. Aalborg University; Dinamarca
Fil: Bak, Claus Leth. Aalborg University; Dinamarca
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Rosero, Javier A.. Universidad Nacional de Colombia; Colombia
Fil: ólason, Daníel Leó. Landsnet; Islandia
description This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88034
Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-3828
1751-8687
1751-8695
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88034
identifier_str_mv Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-3828
1751-8687
1751-8695
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2017.0661
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8444542
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institution of Engineering and Technology
publisher.none.fl_str_mv Institution of Engineering and Technology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083175753711616
score 13.22299