Methodology to assess phasor measurement unit in the estimation of dynamic line rating
- Autores
- Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; ólason, Daníel Leó
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.
Fil: Alvarez, David L.. Universidad Nacional de Colombia; Colombia
Fil: Silva, F. Faria da. Aalborg University; Dinamarca
Fil: Bak, Claus Leth. Aalborg University; Dinamarca
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Rosero, Javier A.. Universidad Nacional de Colombia; Colombia
Fil: ólason, Daníel Leó. Landsnet; Islandia - Materia
-
phasor measurement unit
dynamic line rating - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88034
Ver los metadatos del registro completo
id |
CONICETDig_2cbfbe9053387f6f166168f1a06f36a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88034 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Methodology to assess phasor measurement unit in the estimation of dynamic line ratingAlvarez, David L.Silva, F. Faria daBak, Claus LethMombello, Enrique EstebanRosero, Javier A.ólason, Daníel Leóphasor measurement unitdynamic line ratinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.Fil: Alvarez, David L.. Universidad Nacional de Colombia; ColombiaFil: Silva, F. Faria da. Aalborg University; DinamarcaFil: Bak, Claus Leth. Aalborg University; DinamarcaFil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Rosero, Javier A.. Universidad Nacional de Colombia; ColombiaFil: ólason, Daníel Leó. Landsnet; IslandiaInstitution of Engineering and Technology2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88034Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-38281751-86871751-8695CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2017.0661info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8444542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:19Zoai:ri.conicet.gov.ar:11336/88034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:19.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
title |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
spellingShingle |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating Alvarez, David L. phasor measurement unit dynamic line rating |
title_short |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
title_full |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
title_fullStr |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
title_full_unstemmed |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
title_sort |
Methodology to assess phasor measurement unit in the estimation of dynamic line rating |
dc.creator.none.fl_str_mv |
Alvarez, David L. Silva, F. Faria da Bak, Claus Leth Mombello, Enrique Esteban Rosero, Javier A. ólason, Daníel Leó |
author |
Alvarez, David L. |
author_facet |
Alvarez, David L. Silva, F. Faria da Bak, Claus Leth Mombello, Enrique Esteban Rosero, Javier A. ólason, Daníel Leó |
author_role |
author |
author2 |
Silva, F. Faria da Bak, Claus Leth Mombello, Enrique Esteban Rosero, Javier A. ólason, Daníel Leó |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
phasor measurement unit dynamic line rating |
topic |
phasor measurement unit dynamic line rating |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature. Fil: Alvarez, David L.. Universidad Nacional de Colombia; Colombia Fil: Silva, F. Faria da. Aalborg University; Dinamarca Fil: Bak, Claus Leth. Aalborg University; Dinamarca Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Rosero, Javier A.. Universidad Nacional de Colombia; Colombia Fil: ólason, Daníel Leó. Landsnet; Islandia |
description |
This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a π equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88034 Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-3828 1751-8687 1751-8695 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88034 |
identifier_str_mv |
Alvarez, David L.; Silva, F. Faria da; Bak, Claus Leth; Mombello, Enrique Esteban; Rosero, Javier A.; et al.; Methodology to assess phasor measurement unit in the estimation of dynamic line rating; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 12; 16; 9-2018; 3820-3828 1751-8687 1751-8695 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2017.0661 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8444542 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083175753711616 |
score |
13.22299 |