Transformer-based deep learning model for forced oscillation localization
- Autores
- Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; Wshah, Safwan
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s.
Fil: Matar, Mustafa. University Of Vermont.; Estados Unidos
Fil: Gill Estevez, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Marchi, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Ctro de Simulación Computacional P/aplicaciones Tecnologicas; Argentina
Fil: Elmoudi, Ramadan. No especifíca;
Fil: Wshah, Safwan. University Of Vermont.; Estados Unidos - Materia
-
DEEP LEARNING
DISSIPATING ENERGY
FORCED OSCILLATIONS
PHASOR MEASUREMENT UNIT (PMU)
TRANSFORMER-BASED DEEP LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226670
Ver los metadatos del registro completo
id |
CONICETDig_b9025d973a40723cbfb5f3d8c8e85a81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226670 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Transformer-based deep learning model for forced oscillation localizationMatar, MustafaGill Estevez, Pablo DanielMarchi, Pablo GabrielMessina, Francisco JavierElmoudi, RamadanWshah, SafwanDEEP LEARNINGDISSIPATING ENERGYFORCED OSCILLATIONSPHASOR MEASUREMENT UNIT (PMU)TRANSFORMER-BASED DEEP LEARNINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s.Fil: Matar, Mustafa. University Of Vermont.; Estados UnidosFil: Gill Estevez, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Marchi, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Ctro de Simulación Computacional P/aplicaciones Tecnologicas; ArgentinaFil: Elmoudi, Ramadan. No especifíca;Fil: Wshah, Safwan. University Of Vermont.; Estados UnidosElsevier2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226670Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-110142-0615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0142061522008018info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijepes.2022.108805info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:12:16Zoai:ri.conicet.gov.ar:11336/226670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:12:16.504CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Transformer-based deep learning model for forced oscillation localization |
title |
Transformer-based deep learning model for forced oscillation localization |
spellingShingle |
Transformer-based deep learning model for forced oscillation localization Matar, Mustafa DEEP LEARNING DISSIPATING ENERGY FORCED OSCILLATIONS PHASOR MEASUREMENT UNIT (PMU) TRANSFORMER-BASED DEEP LEARNING |
title_short |
Transformer-based deep learning model for forced oscillation localization |
title_full |
Transformer-based deep learning model for forced oscillation localization |
title_fullStr |
Transformer-based deep learning model for forced oscillation localization |
title_full_unstemmed |
Transformer-based deep learning model for forced oscillation localization |
title_sort |
Transformer-based deep learning model for forced oscillation localization |
dc.creator.none.fl_str_mv |
Matar, Mustafa Gill Estevez, Pablo Daniel Marchi, Pablo Gabriel Messina, Francisco Javier Elmoudi, Ramadan Wshah, Safwan |
author |
Matar, Mustafa |
author_facet |
Matar, Mustafa Gill Estevez, Pablo Daniel Marchi, Pablo Gabriel Messina, Francisco Javier Elmoudi, Ramadan Wshah, Safwan |
author_role |
author |
author2 |
Gill Estevez, Pablo Daniel Marchi, Pablo Gabriel Messina, Francisco Javier Elmoudi, Ramadan Wshah, Safwan |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DEEP LEARNING DISSIPATING ENERGY FORCED OSCILLATIONS PHASOR MEASUREMENT UNIT (PMU) TRANSFORMER-BASED DEEP LEARNING |
topic |
DEEP LEARNING DISSIPATING ENERGY FORCED OSCILLATIONS PHASOR MEASUREMENT UNIT (PMU) TRANSFORMER-BASED DEEP LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s. Fil: Matar, Mustafa. University Of Vermont.; Estados Unidos Fil: Gill Estevez, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Marchi, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Ctro de Simulación Computacional P/aplicaciones Tecnologicas; Argentina Fil: Elmoudi, Ramadan. No especifíca; Fil: Wshah, Safwan. University Of Vermont.; Estados Unidos |
description |
Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226670 Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-11 0142-0615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226670 |
identifier_str_mv |
Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-11 0142-0615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0142061522008018 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijepes.2022.108805 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083270859554816 |
score |
13.22299 |