Towards an active foveated approach to computer vision
- Autores
- Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available.
Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Northwestern University; Estados Unidos
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
Fil: Thiruvathukal, George. Loyola University; Estados Unidos
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina - Materia
-
FOVEATED COMPUTER VISION
GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS)
REINFORCEMENT LEARNING
SACCADIC BEHAVIOR
SELF-SUPERVISED LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203696
Ver los metadatos del registro completo
id |
CONICETDig_2cb26c521e6852f47f2cd84043f8a9f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203696 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards an active foveated approach to computer visionDematties, Dario JesusRizzi, SilvioThiruvathukal, GeorgeWainselboim, Alejandro JavierFOVEATED COMPUTER VISIONGENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS)REINFORCEMENT LEARNINGSACCADIC BEHAVIORSELF-SUPERVISED LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available.Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Northwestern University; Estados UnidosFil: Rizzi, Silvio. Argonne National Laboratory; Estados UnidosFil: Thiruvathukal, George. Loyola University; Estados UnidosFil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaInstituto Politecnico Nacional2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203696Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-16472007-97371405-5546CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/4436info:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000401635&script=sci_arttextinfo:eu-repo/semantics/altIdentifier/doi/10.13053/cys-26-4-4436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:33Zoai:ri.conicet.gov.ar:11336/203696instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:33.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards an active foveated approach to computer vision |
title |
Towards an active foveated approach to computer vision |
spellingShingle |
Towards an active foveated approach to computer vision Dematties, Dario Jesus FOVEATED COMPUTER VISION GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS) REINFORCEMENT LEARNING SACCADIC BEHAVIOR SELF-SUPERVISED LEARNING |
title_short |
Towards an active foveated approach to computer vision |
title_full |
Towards an active foveated approach to computer vision |
title_fullStr |
Towards an active foveated approach to computer vision |
title_full_unstemmed |
Towards an active foveated approach to computer vision |
title_sort |
Towards an active foveated approach to computer vision |
dc.creator.none.fl_str_mv |
Dematties, Dario Jesus Rizzi, Silvio Thiruvathukal, George Wainselboim, Alejandro Javier |
author |
Dematties, Dario Jesus |
author_facet |
Dematties, Dario Jesus Rizzi, Silvio Thiruvathukal, George Wainselboim, Alejandro Javier |
author_role |
author |
author2 |
Rizzi, Silvio Thiruvathukal, George Wainselboim, Alejandro Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FOVEATED COMPUTER VISION GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS) REINFORCEMENT LEARNING SACCADIC BEHAVIOR SELF-SUPERVISED LEARNING |
topic |
FOVEATED COMPUTER VISION GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS) REINFORCEMENT LEARNING SACCADIC BEHAVIOR SELF-SUPERVISED LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available. Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Northwestern University; Estados Unidos Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos Fil: Thiruvathukal, George. Loyola University; Estados Unidos Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina |
description |
In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203696 Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-1647 2007-9737 1405-5546 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203696 |
identifier_str_mv |
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-1647 2007-9737 1405-5546 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/4436 info:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000401635&script=sci_arttext info:eu-repo/semantics/altIdentifier/doi/10.13053/cys-26-4-4436 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Politecnico Nacional |
publisher.none.fl_str_mv |
Instituto Politecnico Nacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269468128968704 |
score |
13.13397 |