Towards high-end scalability on biologically-inspired computational models
- Autores
- Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina - Materia
-
MPI
OPENMP
CENTRAL PROCESSING UNITS
BIOLOGICAL MODELS
NEUROSCIENCE
IRREGULAR COMPUTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/131407
Ver los metadatos del registro completo
| id |
CONICETDig_019c0c4451f6fbde1afd2e7d8d88a764 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/131407 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Towards high-end scalability on biologically-inspired computational modelsDematties, Dario JesusThiruvathukal, George K.Rizzi, SilvioWainselboim, Alejandro JavierZanutto, Bonifacio SilvanoMPIOPENMPCENTRAL PROCESSING UNITSBIOLOGICAL MODELSNEUROSCIENCEIRREGULAR COMPUTATIONhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFil: Thiruvathukal, George K.. University of Chicago; Estados UnidosFil: Rizzi, Silvio. Argonne National Laboratory; Estados UnidosFil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaIOS PressFoster, IanJoubert, Gerhard R.Kučera, LuděkNagel, Wolfgang E.Peters, Frans2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131407Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506978-1-64368-071-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ebooks.iospress.nl/volumearticle/53956info:eu-repo/semantics/altIdentifier/doi/10.3233/APC200077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:38:44Zoai:ri.conicet.gov.ar:11336/131407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:38:44.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Towards high-end scalability on biologically-inspired computational models |
| title |
Towards high-end scalability on biologically-inspired computational models |
| spellingShingle |
Towards high-end scalability on biologically-inspired computational models Dematties, Dario Jesus MPI OPENMP CENTRAL PROCESSING UNITS BIOLOGICAL MODELS NEUROSCIENCE IRREGULAR COMPUTATION |
| title_short |
Towards high-end scalability on biologically-inspired computational models |
| title_full |
Towards high-end scalability on biologically-inspired computational models |
| title_fullStr |
Towards high-end scalability on biologically-inspired computational models |
| title_full_unstemmed |
Towards high-end scalability on biologically-inspired computational models |
| title_sort |
Towards high-end scalability on biologically-inspired computational models |
| dc.creator.none.fl_str_mv |
Dematties, Dario Jesus Thiruvathukal, George K. Rizzi, Silvio Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
| author |
Dematties, Dario Jesus |
| author_facet |
Dematties, Dario Jesus Thiruvathukal, George K. Rizzi, Silvio Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
| author_role |
author |
| author2 |
Thiruvathukal, George K. Rizzi, Silvio Wainselboim, Alejandro Javier Zanutto, Bonifacio Silvano |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Foster, Ian Joubert, Gerhard R. Kučera, Luděk Nagel, Wolfgang E. Peters, Frans |
| dc.subject.none.fl_str_mv |
MPI OPENMP CENTRAL PROCESSING UNITS BIOLOGICAL MODELS NEUROSCIENCE IRREGULAR COMPUTATION |
| topic |
MPI OPENMP CENTRAL PROCESSING UNITS BIOLOGICAL MODELS NEUROSCIENCE IRREGULAR COMPUTATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future. Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina |
| description |
The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
| status_str |
publishedVersion |
| format |
bookPart |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/131407 Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506 978-1-64368-071-2 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/131407 |
| identifier_str_mv |
Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506 978-1-64368-071-2 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ebooks.iospress.nl/volumearticle/53956 info:eu-repo/semantics/altIdentifier/doi/10.3233/APC200077 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOS Press |
| publisher.none.fl_str_mv |
IOS Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597397373976576 |
| score |
13.25334 |