Towards high-end scalability on biologically-inspired computational models

Autores
Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano
Año de publicación
2020
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Materia
MPI
OPENMP
CENTRAL PROCESSING UNITS
BIOLOGICAL MODELS
NEUROSCIENCE
IRREGULAR COMPUTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/131407

id CONICETDig_019c0c4451f6fbde1afd2e7d8d88a764
oai_identifier_str oai:ri.conicet.gov.ar:11336/131407
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Towards high-end scalability on biologically-inspired computational modelsDematties, Dario JesusThiruvathukal, George K.Rizzi, SilvioWainselboim, Alejandro JavierZanutto, Bonifacio SilvanoMPIOPENMPCENTRAL PROCESSING UNITSBIOLOGICAL MODELSNEUROSCIENCEIRREGULAR COMPUTATIONhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFil: Thiruvathukal, George K.. University of Chicago; Estados UnidosFil: Rizzi, Silvio. Argonne National Laboratory; Estados UnidosFil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaIOS PressFoster, IanJoubert, Gerhard R.Kučera, LuděkNagel, Wolfgang E.Peters, Frans2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131407Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506978-1-64368-071-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ebooks.iospress.nl/volumearticle/53956info:eu-repo/semantics/altIdentifier/doi/10.3233/APC200077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:38:44Zoai:ri.conicet.gov.ar:11336/131407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:38:44.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Towards high-end scalability on biologically-inspired computational models
title Towards high-end scalability on biologically-inspired computational models
spellingShingle Towards high-end scalability on biologically-inspired computational models
Dematties, Dario Jesus
MPI
OPENMP
CENTRAL PROCESSING UNITS
BIOLOGICAL MODELS
NEUROSCIENCE
IRREGULAR COMPUTATION
title_short Towards high-end scalability on biologically-inspired computational models
title_full Towards high-end scalability on biologically-inspired computational models
title_fullStr Towards high-end scalability on biologically-inspired computational models
title_full_unstemmed Towards high-end scalability on biologically-inspired computational models
title_sort Towards high-end scalability on biologically-inspired computational models
dc.creator.none.fl_str_mv Dematties, Dario Jesus
Thiruvathukal, George K.
Rizzi, Silvio
Wainselboim, Alejandro Javier
Zanutto, Bonifacio Silvano
author Dematties, Dario Jesus
author_facet Dematties, Dario Jesus
Thiruvathukal, George K.
Rizzi, Silvio
Wainselboim, Alejandro Javier
Zanutto, Bonifacio Silvano
author_role author
author2 Thiruvathukal, George K.
Rizzi, Silvio
Wainselboim, Alejandro Javier
Zanutto, Bonifacio Silvano
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Foster, Ian
Joubert, Gerhard R.
Kučera, Luděk
Nagel, Wolfgang E.
Peters, Frans
dc.subject.none.fl_str_mv MPI
OPENMP
CENTRAL PROCESSING UNITS
BIOLOGICAL MODELS
NEUROSCIENCE
IRREGULAR COMPUTATION
topic MPI
OPENMP
CENTRAL PROCESSING UNITS
BIOLOGICAL MODELS
NEUROSCIENCE
IRREGULAR COMPUTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
description The interdisciplinary field of neuroscience has made significant progress in recent decades, providing the scientific community in general with a new level of understanding on how the brain works beyond the store-and-fire model found in traditional neural networks. Meanwhile, Machine Learning (ML) based on established models has seen a surge of interest in the High Performance Computing (HPC) community, especially through the use of high-end accelerators, such as Graphical Processing Units(GPUs), including HPC clusters of same. In our work, we are motivated to exploit these high-performance computing developments and understand the scaling challenges for new–biologically inspired–learning models on leadership-class HPC resources. These emerging models feature sparse and random connectivity profiles that map to more loosely-coupled parallel architectures with a large number of CPU cores per node. Contrasted with traditional ML codes, these methods exploit loosely-coupled sparse data structures as opposed to tightly-coupled dense matrix computations, which benefit from SIMD-style parallelism found on GPUs. In this paper we introduce a hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) parallelization scheme to accelerate and scale our computational model based on the dynamics of cortical tissue. We ran computational tests on a leadership class visualization and analysis cluster at Argonne National Laboratory. We include a study of strong and weak scaling, where we obtained parallel efficiency measures with a minimum above 87% and a maximum above 97% for simulations of our biologically inspired neural network on up to 64 computing nodes running 8 threads each. This study shows promise of the MPI+OpenMP hybrid approach to support flexible and biologically-inspired computational experimental scenarios. In addition, we present the viability in the application of these strategies in high-end leadership computers in the future.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/131407
Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506
978-1-64368-071-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/131407
identifier_str_mv Dematties, Dario Jesus; Thiruvathukal, George K.; Rizzi, Silvio; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Towards high-end scalability on biologically-inspired computational models; IOS Press; 36; 2020; 497-506
978-1-64368-071-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ebooks.iospress.nl/volumearticle/53956
info:eu-repo/semantics/altIdentifier/doi/10.3233/APC200077
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597397373976576
score 13.25334