SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design

Autores
Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper the core of a genetic algorithm designed to define a sensor network for instrumentation design (ID) is presented. The tool has been incorporated into a decision support system (DSS) that assists the engineer during the ID process. The algorithm satisfactorily deals with non-linear mathematical models, and considers four design objectives, namely observability, cost, reliability and redundancy, exhibiting properties that were either never addressed by existing techniques or partially dealt with in the literature. Its performance was tested by carrying out the ID of an ammonia synthesis industrial plant. Results were statistically analysed. A face validity study on the fitness function's soundness was also assessed by a chemical engineer with insight and expertise in this problem. The technique performed satisfactorily from the point of view of the expert in ID, and therefore it constitutes a significant upgrading for the DSS. © 2008 Elsevier Ltd. All rights reserved.
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Combinatorial Optimization Problem
Decision Support System
Genetic Algorithms
Instrumentation Design
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61623

id CONICETDig_88b7d091c7ea228ae4998dcce5dabbd4
oai_identifier_str oai:ri.conicet.gov.ar:11336/61623
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation designCarballido, Jessica AndreaPonzoni, IgnacioBrignole, Nélida BeatrizCombinatorial Optimization ProblemDecision Support SystemGenetic AlgorithmsInstrumentation Designhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper the core of a genetic algorithm designed to define a sensor network for instrumentation design (ID) is presented. The tool has been incorporated into a decision support system (DSS) that assists the engineer during the ID process. The algorithm satisfactorily deals with non-linear mathematical models, and considers four design objectives, namely observability, cost, reliability and redundancy, exhibiting properties that were either never addressed by existing techniques or partially dealt with in the literature. Its performance was tested by carrying out the ID of an ammonia synthesis industrial plant. Results were statistically analysed. A face validity study on the fitness function's soundness was also assessed by a chemical engineer with insight and expertise in this problem. The technique performed satisfactorily from the point of view of the expert in ID, and therefore it constitutes a significant upgrading for the DSS. © 2008 Elsevier Ltd. All rights reserved.Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaPergamon-Elsevier Science Ltd2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61623Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 56; 4; 5-2009; 1419-14280360-8352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2008.09.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360835208001940info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:33Zoai:ri.conicet.gov.ar:11336/61623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:33.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
title SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
spellingShingle SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
Carballido, Jessica Andrea
Combinatorial Optimization Problem
Decision Support System
Genetic Algorithms
Instrumentation Design
title_short SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
title_full SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
title_fullStr SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
title_full_unstemmed SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
title_sort SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design
dc.creator.none.fl_str_mv Carballido, Jessica Andrea
Ponzoni, Ignacio
Brignole, Nélida Beatriz
author Carballido, Jessica Andrea
author_facet Carballido, Jessica Andrea
Ponzoni, Ignacio
Brignole, Nélida Beatriz
author_role author
author2 Ponzoni, Ignacio
Brignole, Nélida Beatriz
author2_role author
author
dc.subject.none.fl_str_mv Combinatorial Optimization Problem
Decision Support System
Genetic Algorithms
Instrumentation Design
topic Combinatorial Optimization Problem
Decision Support System
Genetic Algorithms
Instrumentation Design
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper the core of a genetic algorithm designed to define a sensor network for instrumentation design (ID) is presented. The tool has been incorporated into a decision support system (DSS) that assists the engineer during the ID process. The algorithm satisfactorily deals with non-linear mathematical models, and considers four design objectives, namely observability, cost, reliability and redundancy, exhibiting properties that were either never addressed by existing techniques or partially dealt with in the literature. Its performance was tested by carrying out the ID of an ammonia synthesis industrial plant. Results were statistically analysed. A face validity study on the fitness function's soundness was also assessed by a chemical engineer with insight and expertise in this problem. The technique performed satisfactorily from the point of view of the expert in ID, and therefore it constitutes a significant upgrading for the DSS. © 2008 Elsevier Ltd. All rights reserved.
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description In this paper the core of a genetic algorithm designed to define a sensor network for instrumentation design (ID) is presented. The tool has been incorporated into a decision support system (DSS) that assists the engineer during the ID process. The algorithm satisfactorily deals with non-linear mathematical models, and considers four design objectives, namely observability, cost, reliability and redundancy, exhibiting properties that were either never addressed by existing techniques or partially dealt with in the literature. Its performance was tested by carrying out the ID of an ammonia synthesis industrial plant. Results were statistically analysed. A face validity study on the fitness function's soundness was also assessed by a chemical engineer with insight and expertise in this problem. The technique performed satisfactorily from the point of view of the expert in ID, and therefore it constitutes a significant upgrading for the DSS. © 2008 Elsevier Ltd. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61623
Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 56; 4; 5-2009; 1419-1428
0360-8352
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61623
identifier_str_mv Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; SID-GA: An evolutionary approach for improving observability and redundancy analysis in structural instrumentation design; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 56; 4; 5-2009; 1419-1428
0360-8352
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2008.09.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360835208001940
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613533035134976
score 13.070432