On the symmetry of three identical interacting particles in a one-dimensional box

Autores
Amore, Paolo; Fernández, Francisco Marcelo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.
Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
BOX TRAP
IDENTICAL PARTICLES
PERTURBATION THEORY
POINT-GROUP SYMMETRY
VARIATIONAL METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/81894

id CONICETDig_2a78f30cc421d062e17af0e3bf0dfbc6
oai_identifier_str oai:ri.conicet.gov.ar:11336/81894
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the symmetry of three identical interacting particles in a one-dimensional boxAmore, PaoloFernández, Francisco MarceloBOX TRAPIDENTICAL PARTICLESPERTURBATION THEORYPOINT-GROUP SYMMETRYVARIATIONAL METHODhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Academic Press Inc2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81894Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-1290003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002894info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1504.01762info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:20Zoai:ri.conicet.gov.ar:11336/81894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:20.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the symmetry of three identical interacting particles in a one-dimensional box
title On the symmetry of three identical interacting particles in a one-dimensional box
spellingShingle On the symmetry of three identical interacting particles in a one-dimensional box
Amore, Paolo
BOX TRAP
IDENTICAL PARTICLES
PERTURBATION THEORY
POINT-GROUP SYMMETRY
VARIATIONAL METHOD
title_short On the symmetry of three identical interacting particles in a one-dimensional box
title_full On the symmetry of three identical interacting particles in a one-dimensional box
title_fullStr On the symmetry of three identical interacting particles in a one-dimensional box
title_full_unstemmed On the symmetry of three identical interacting particles in a one-dimensional box
title_sort On the symmetry of three identical interacting particles in a one-dimensional box
dc.creator.none.fl_str_mv Amore, Paolo
Fernández, Francisco Marcelo
author Amore, Paolo
author_facet Amore, Paolo
Fernández, Francisco Marcelo
author_role author
author2 Fernández, Francisco Marcelo
author2_role author
dc.subject.none.fl_str_mv BOX TRAP
IDENTICAL PARTICLES
PERTURBATION THEORY
POINT-GROUP SYMMETRY
VARIATIONAL METHOD
topic BOX TRAP
IDENTICAL PARTICLES
PERTURBATION THEORY
POINT-GROUP SYMMETRY
VARIATIONAL METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.
Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/81894
Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-129
0003-4916
CONICET Digital
CONICET
url http://hdl.handle.net/11336/81894
identifier_str_mv Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-129
0003-4916
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002894
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1504.01762
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Academic Press Inc
publisher.none.fl_str_mv Elsevier Academic Press Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613062192005120
score 13.070432