On the symmetry of three identical interacting particles in a one-dimensional box
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.
Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
BOX TRAP
IDENTICAL PARTICLES
PERTURBATION THEORY
POINT-GROUP SYMMETRY
VARIATIONAL METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81894
Ver los metadatos del registro completo
id |
CONICETDig_2a78f30cc421d062e17af0e3bf0dfbc6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81894 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the symmetry of three identical interacting particles in a one-dimensional boxAmore, PaoloFernández, Francisco MarceloBOX TRAPIDENTICAL PARTICLESPERTURBATION THEORYPOINT-GROUP SYMMETRYVARIATIONAL METHODhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Academic Press Inc2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81894Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-1290003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002894info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1504.01762info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:20Zoai:ri.conicet.gov.ar:11336/81894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:20.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the symmetry of three identical interacting particles in a one-dimensional box |
title |
On the symmetry of three identical interacting particles in a one-dimensional box |
spellingShingle |
On the symmetry of three identical interacting particles in a one-dimensional box Amore, Paolo BOX TRAP IDENTICAL PARTICLES PERTURBATION THEORY POINT-GROUP SYMMETRY VARIATIONAL METHOD |
title_short |
On the symmetry of three identical interacting particles in a one-dimensional box |
title_full |
On the symmetry of three identical interacting particles in a one-dimensional box |
title_fullStr |
On the symmetry of three identical interacting particles in a one-dimensional box |
title_full_unstemmed |
On the symmetry of three identical interacting particles in a one-dimensional box |
title_sort |
On the symmetry of three identical interacting particles in a one-dimensional box |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
BOX TRAP IDENTICAL PARTICLES PERTURBATION THEORY POINT-GROUP SYMMETRY VARIATIONAL METHOD |
topic |
BOX TRAP IDENTICAL PARTICLES PERTURBATION THEORY POINT-GROUP SYMMETRY VARIATIONAL METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system. Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencia; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
We study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D3d. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81894 Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-129 0003-4916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81894 |
identifier_str_mv |
Amore, Paolo; Fernández, Francisco Marcelo; On the symmetry of three identical interacting particles in a one-dimensional box; Elsevier Academic Press Inc; Annals of Physics (New York); 362; 11-2015; 118-129 0003-4916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615002894 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1504.01762 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.07.024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Academic Press Inc |
publisher.none.fl_str_mv |
Elsevier Academic Press Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613062192005120 |
score |
13.070432 |