Non-Hermitian oscillators with Td symmetry

Autores
Amore, Paolo; Fernández, Francisco Marcelo; Garcia, Javier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyse some PT-symmetric oscillators with Td symmetry that depend on a potential parameter g. We calculate the eigenvalues and eigenfunctions for each irreducible representation and for a range of values of g. Pairs of eigenvalues coalesce at exceptional points gc; their magnitude roughly decreasing with the magnitude of the eigenvalues. It is difficult to estimate whether there is a phase transition at a nonzero value of g as conjectured in earlier papers. Group theory and perturbation theory enable one to predict whether a given space-time symmetry leads to real eigenvalues for sufficiently small nonzero values of g.
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
Multidimensional Systems
Non-Hermitian Hamiltonian
Point-Group Symmetry
Pt-Symmetry
Space-Time Symmetry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37673

id CONICETDig_1eeb15bd9c38c0c7a5a7c51613bfa863
oai_identifier_str oai:ri.conicet.gov.ar:11336/37673
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-Hermitian oscillators with Td symmetryAmore, PaoloFernández, Francisco MarceloGarcia, JavierMultidimensional SystemsNon-Hermitian HamiltonianPoint-Group SymmetryPt-SymmetrySpace-Time Symmetryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyse some PT-symmetric oscillators with Td symmetry that depend on a potential parameter g. We calculate the eigenvalues and eigenfunctions for each irreducible representation and for a range of values of g. Pairs of eigenvalues coalesce at exceptional points gc; their magnitude roughly decreasing with the magnitude of the eigenvalues. It is difficult to estimate whether there is a phase transition at a nonzero value of g as conjectured in earlier papers. Group theory and perturbation theory enable one to predict whether a given space-time symmetry leads to real eigenvalues for sufficiently small nonzero values of g.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAcademic Press Inc Elsevier Science2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37673Amore, Paolo; Fernández, Francisco Marcelo; Garcia, Javier; Non-Hermitian oscillators with Td symmetry; Academic Press Inc Elsevier Science; Annals of Physics (New York); 353; 2-2015; 231-2580003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2014.11.018info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491614003388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:38Zoai:ri.conicet.gov.ar:11336/37673instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:39.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-Hermitian oscillators with Td symmetry
title Non-Hermitian oscillators with Td symmetry
spellingShingle Non-Hermitian oscillators with Td symmetry
Amore, Paolo
Multidimensional Systems
Non-Hermitian Hamiltonian
Point-Group Symmetry
Pt-Symmetry
Space-Time Symmetry
title_short Non-Hermitian oscillators with Td symmetry
title_full Non-Hermitian oscillators with Td symmetry
title_fullStr Non-Hermitian oscillators with Td symmetry
title_full_unstemmed Non-Hermitian oscillators with Td symmetry
title_sort Non-Hermitian oscillators with Td symmetry
dc.creator.none.fl_str_mv Amore, Paolo
Fernández, Francisco Marcelo
Garcia, Javier
author Amore, Paolo
author_facet Amore, Paolo
Fernández, Francisco Marcelo
Garcia, Javier
author_role author
author2 Fernández, Francisco Marcelo
Garcia, Javier
author2_role author
author
dc.subject.none.fl_str_mv Multidimensional Systems
Non-Hermitian Hamiltonian
Point-Group Symmetry
Pt-Symmetry
Space-Time Symmetry
topic Multidimensional Systems
Non-Hermitian Hamiltonian
Point-Group Symmetry
Pt-Symmetry
Space-Time Symmetry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyse some PT-symmetric oscillators with Td symmetry that depend on a potential parameter g. We calculate the eigenvalues and eigenfunctions for each irreducible representation and for a range of values of g. Pairs of eigenvalues coalesce at exceptional points gc; their magnitude roughly decreasing with the magnitude of the eigenvalues. It is difficult to estimate whether there is a phase transition at a nonzero value of g as conjectured in earlier papers. Group theory and perturbation theory enable one to predict whether a given space-time symmetry leads to real eigenvalues for sufficiently small nonzero values of g.
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description We analyse some PT-symmetric oscillators with Td symmetry that depend on a potential parameter g. We calculate the eigenvalues and eigenfunctions for each irreducible representation and for a range of values of g. Pairs of eigenvalues coalesce at exceptional points gc; their magnitude roughly decreasing with the magnitude of the eigenvalues. It is difficult to estimate whether there is a phase transition at a nonzero value of g as conjectured in earlier papers. Group theory and perturbation theory enable one to predict whether a given space-time symmetry leads to real eigenvalues for sufficiently small nonzero values of g.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37673
Amore, Paolo; Fernández, Francisco Marcelo; Garcia, Javier; Non-Hermitian oscillators with Td symmetry; Academic Press Inc Elsevier Science; Annals of Physics (New York); 353; 2-2015; 231-258
0003-4916
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37673
identifier_str_mv Amore, Paolo; Fernández, Francisco Marcelo; Garcia, Javier; Non-Hermitian oscillators with Td symmetry; Academic Press Inc Elsevier Science; Annals of Physics (New York); 353; 2-2015; 231-258
0003-4916
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2014.11.018
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491614003388
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981073530650624
score 12.48226