Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional obse...
- Autores
- Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; Avila Funes, José Alberto; Behrens, María I.; Brusco, Luis Ignacio; Bruno, Martin; Cardona, Juan F.; Custodio, Nilton; García, Adolfo Martín; Javandel, Shireen; Lopera, Francisco; Matallana, Diana L.; Miller, Bruce; Okada de Oliveira, Maira; Pina-Escudero, Stefanie D.; Slachevsky, Andrea; Sosa Ortiz, Ana L.; Takada, Leonel T.; Tagliazuchi, Enzo; Valcour, Victor; Yokoyama, Jennifer S.; Ibañez, Agustín
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.
Fil: Maito, Marcelo Adrián. Universidad de San Andrés; Argentina
Fil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moguilner, Sebastián. Universidad de San Andrés; Argentina
Fil: Possin, Katherine L.. University of California; Estados Unidos
Fil: Godoy, María Eugenia. Universidad de San Andrés; Argentina
Fil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; Francia
Fil: Behrens, María I.. Universidad de Chile; Chile
Fil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Cardona, Juan F.. Universidad del Valle; Colombia
Fil: Custodio, Nilton. Peruvian National Institute Of Health; Perú
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos
Fil: Javandel, Shireen. University of California; Estados Unidos
Fil: Lopera, Francisco. Universidad de Antioquia; Colombia
Fil: Matallana, Diana L.. Pontificia Universidad Javeriana; Colombia
Fil: Miller, Bruce. University of California; Estados Unidos
Fil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados Unidos
Fil: Pina-Escudero, Stefanie D.. University of California; Estados Unidos
Fil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; Chile
Fil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; México
Fil: Takada, Leonel T.. Universidade de Sao Paulo; Brasil
Fil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valcour, Victor. University of California; Estados Unidos
Fil: Yokoyama, Jennifer S.. University of California; Estados Unidos
Fil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile - Materia
-
ALZHEIMER'S DISEASE
FRONTOTEMPORAL DEMENTIA
MACHINE LEARNING
UNDERREPRESENTED SAMPLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223143
Ver los metadatos del registro completo
id |
CONICETDig_29d34ae98b52b53ad1ebde59482324d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223143 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational studyMaito, Marcelo AdriánSantamaria Garcia, HernandoMoguilner, SebastiánPossin, Katherine L.Godoy, María EugeniaAvila Funes, José AlbertoBehrens, María I.Brusco, Luis IgnacioBruno, MartinCardona, Juan F.Custodio, NiltonGarcía, Adolfo MartínJavandel, ShireenLopera, FranciscoMatallana, Diana L.Miller, BruceOkada de Oliveira, MairaPina-Escudero, Stefanie D.Slachevsky, AndreaSosa Ortiz, Ana L.Takada, Leonel T.Tagliazuchi, EnzoValcour, VictorYokoyama, Jennifer S.Ibañez, AgustínALZHEIMER'S DISEASEFRONTOTEMPORAL DEMENTIAMACHINE LEARNINGUNDERREPRESENTED SAMPLEShttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.Fil: Maito, Marcelo Adrián. Universidad de San Andrés; ArgentinaFil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moguilner, Sebastián. Universidad de San Andrés; ArgentinaFil: Possin, Katherine L.. University of California; Estados UnidosFil: Godoy, María Eugenia. Universidad de San Andrés; ArgentinaFil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; FranciaFil: Behrens, María I.. Universidad de Chile; ChileFil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Cardona, Juan F.. Universidad del Valle; ColombiaFil: Custodio, Nilton. Peruvian National Institute Of Health; PerúFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados UnidosFil: Javandel, Shireen. University of California; Estados UnidosFil: Lopera, Francisco. Universidad de Antioquia; ColombiaFil: Matallana, Diana L.. Pontificia Universidad Javeriana; ColombiaFil: Miller, Bruce. University of California; Estados UnidosFil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados UnidosFil: Pina-Escudero, Stefanie D.. University of California; Estados UnidosFil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; ChileFil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; MéxicoFil: Takada, Leonel T.. Universidade de Sao Paulo; BrasilFil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Valcour, Victor. University of California; Estados UnidosFil: Yokoyama, Jennifer S.. University of California; Estados UnidosFil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; ChileElsevier2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223143Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-142667-193XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667193X22002046info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lana.2022.100387info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:41Zoai:ri.conicet.gov.ar:11336/223143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:41.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
title |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
spellingShingle |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study Maito, Marcelo Adrián ALZHEIMER'S DISEASE FRONTOTEMPORAL DEMENTIA MACHINE LEARNING UNDERREPRESENTED SAMPLES |
title_short |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
title_full |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
title_fullStr |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
title_full_unstemmed |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
title_sort |
Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study |
dc.creator.none.fl_str_mv |
Maito, Marcelo Adrián Santamaria Garcia, Hernando Moguilner, Sebastián Possin, Katherine L. Godoy, María Eugenia Avila Funes, José Alberto Behrens, María I. Brusco, Luis Ignacio Bruno, Martin Cardona, Juan F. Custodio, Nilton García, Adolfo Martín Javandel, Shireen Lopera, Francisco Matallana, Diana L. Miller, Bruce Okada de Oliveira, Maira Pina-Escudero, Stefanie D. Slachevsky, Andrea Sosa Ortiz, Ana L. Takada, Leonel T. Tagliazuchi, Enzo Valcour, Victor Yokoyama, Jennifer S. Ibañez, Agustín |
author |
Maito, Marcelo Adrián |
author_facet |
Maito, Marcelo Adrián Santamaria Garcia, Hernando Moguilner, Sebastián Possin, Katherine L. Godoy, María Eugenia Avila Funes, José Alberto Behrens, María I. Brusco, Luis Ignacio Bruno, Martin Cardona, Juan F. Custodio, Nilton García, Adolfo Martín Javandel, Shireen Lopera, Francisco Matallana, Diana L. Miller, Bruce Okada de Oliveira, Maira Pina-Escudero, Stefanie D. Slachevsky, Andrea Sosa Ortiz, Ana L. Takada, Leonel T. Tagliazuchi, Enzo Valcour, Victor Yokoyama, Jennifer S. Ibañez, Agustín |
author_role |
author |
author2 |
Santamaria Garcia, Hernando Moguilner, Sebastián Possin, Katherine L. Godoy, María Eugenia Avila Funes, José Alberto Behrens, María I. Brusco, Luis Ignacio Bruno, Martin Cardona, Juan F. Custodio, Nilton García, Adolfo Martín Javandel, Shireen Lopera, Francisco Matallana, Diana L. Miller, Bruce Okada de Oliveira, Maira Pina-Escudero, Stefanie D. Slachevsky, Andrea Sosa Ortiz, Ana L. Takada, Leonel T. Tagliazuchi, Enzo Valcour, Victor Yokoyama, Jennifer S. Ibañez, Agustín |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ALZHEIMER'S DISEASE FRONTOTEMPORAL DEMENTIA MACHINE LEARNING UNDERREPRESENTED SAMPLES |
topic |
ALZHEIMER'S DISEASE FRONTOTEMPORAL DEMENTIA MACHINE LEARNING UNDERREPRESENTED SAMPLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742. Fil: Maito, Marcelo Adrián. Universidad de San Andrés; Argentina Fil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Moguilner, Sebastián. Universidad de San Andrés; Argentina Fil: Possin, Katherine L.. University of California; Estados Unidos Fil: Godoy, María Eugenia. Universidad de San Andrés; Argentina Fil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; Francia Fil: Behrens, María I.. Universidad de Chile; Chile Fil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Cardona, Juan F.. Universidad del Valle; Colombia Fil: Custodio, Nilton. Peruvian National Institute Of Health; Perú Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos Fil: Javandel, Shireen. University of California; Estados Unidos Fil: Lopera, Francisco. Universidad de Antioquia; Colombia Fil: Matallana, Diana L.. Pontificia Universidad Javeriana; Colombia Fil: Miller, Bruce. University of California; Estados Unidos Fil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados Unidos Fil: Pina-Escudero, Stefanie D.. University of California; Estados Unidos Fil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; Chile Fil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; México Fil: Takada, Leonel T.. Universidade de Sao Paulo; Brasil Fil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Valcour, Victor. University of California; Estados Unidos Fil: Yokoyama, Jennifer S.. University of California; Estados Unidos Fil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile |
description |
Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223143 Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-14 2667-193X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/223143 |
identifier_str_mv |
Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-14 2667-193X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667193X22002046 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lana.2022.100387 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270168182423552 |
score |
13.13397 |