Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional obse...

Autores
Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; Avila Funes, José Alberto; Behrens, María I.; Brusco, Luis Ignacio; Bruno, Martin; Cardona, Juan F.; Custodio, Nilton; García, Adolfo Martín; Javandel, Shireen; Lopera, Francisco; Matallana, Diana L.; Miller, Bruce; Okada de Oliveira, Maira; Pina-Escudero, Stefanie D.; Slachevsky, Andrea; Sosa Ortiz, Ana L.; Takada, Leonel T.; Tagliazuchi, Enzo; Valcour, Victor; Yokoyama, Jennifer S.; Ibañez, Agustín
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.
Fil: Maito, Marcelo Adrián. Universidad de San Andrés; Argentina
Fil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moguilner, Sebastián. Universidad de San Andrés; Argentina
Fil: Possin, Katherine L.. University of California; Estados Unidos
Fil: Godoy, María Eugenia. Universidad de San Andrés; Argentina
Fil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; Francia
Fil: Behrens, María I.. Universidad de Chile; Chile
Fil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Cardona, Juan F.. Universidad del Valle; Colombia
Fil: Custodio, Nilton. Peruvian National Institute Of Health; Perú
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos
Fil: Javandel, Shireen. University of California; Estados Unidos
Fil: Lopera, Francisco. Universidad de Antioquia; Colombia
Fil: Matallana, Diana L.. Pontificia Universidad Javeriana; Colombia
Fil: Miller, Bruce. University of California; Estados Unidos
Fil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados Unidos
Fil: Pina-Escudero, Stefanie D.. University of California; Estados Unidos
Fil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; Chile
Fil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; México
Fil: Takada, Leonel T.. Universidade de Sao Paulo; Brasil
Fil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valcour, Victor. University of California; Estados Unidos
Fil: Yokoyama, Jennifer S.. University of California; Estados Unidos
Fil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile
Materia
ALZHEIMER'S DISEASE
FRONTOTEMPORAL DEMENTIA
MACHINE LEARNING
UNDERREPRESENTED SAMPLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/223143

id CONICETDig_29d34ae98b52b53ad1ebde59482324d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/223143
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational studyMaito, Marcelo AdriánSantamaria Garcia, HernandoMoguilner, SebastiánPossin, Katherine L.Godoy, María EugeniaAvila Funes, José AlbertoBehrens, María I.Brusco, Luis IgnacioBruno, MartinCardona, Juan F.Custodio, NiltonGarcía, Adolfo MartínJavandel, ShireenLopera, FranciscoMatallana, Diana L.Miller, BruceOkada de Oliveira, MairaPina-Escudero, Stefanie D.Slachevsky, AndreaSosa Ortiz, Ana L.Takada, Leonel T.Tagliazuchi, EnzoValcour, VictorYokoyama, Jennifer S.Ibañez, AgustínALZHEIMER'S DISEASEFRONTOTEMPORAL DEMENTIAMACHINE LEARNINGUNDERREPRESENTED SAMPLEShttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.Fil: Maito, Marcelo Adrián. Universidad de San Andrés; ArgentinaFil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moguilner, Sebastián. Universidad de San Andrés; ArgentinaFil: Possin, Katherine L.. University of California; Estados UnidosFil: Godoy, María Eugenia. Universidad de San Andrés; ArgentinaFil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; FranciaFil: Behrens, María I.. Universidad de Chile; ChileFil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Cardona, Juan F.. Universidad del Valle; ColombiaFil: Custodio, Nilton. Peruvian National Institute Of Health; PerúFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados UnidosFil: Javandel, Shireen. University of California; Estados UnidosFil: Lopera, Francisco. Universidad de Antioquia; ColombiaFil: Matallana, Diana L.. Pontificia Universidad Javeriana; ColombiaFil: Miller, Bruce. University of California; Estados UnidosFil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados UnidosFil: Pina-Escudero, Stefanie D.. University of California; Estados UnidosFil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; ChileFil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; MéxicoFil: Takada, Leonel T.. Universidade de Sao Paulo; BrasilFil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Valcour, Victor. University of California; Estados UnidosFil: Yokoyama, Jennifer S.. University of California; Estados UnidosFil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; ChileElsevier2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223143Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-142667-193XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667193X22002046info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lana.2022.100387info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:41Zoai:ri.conicet.gov.ar:11336/223143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:41.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
title Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
spellingShingle Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
Maito, Marcelo Adrián
ALZHEIMER'S DISEASE
FRONTOTEMPORAL DEMENTIA
MACHINE LEARNING
UNDERREPRESENTED SAMPLES
title_short Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
title_full Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
title_fullStr Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
title_full_unstemmed Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
title_sort Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study
dc.creator.none.fl_str_mv Maito, Marcelo Adrián
Santamaria Garcia, Hernando
Moguilner, Sebastián
Possin, Katherine L.
Godoy, María Eugenia
Avila Funes, José Alberto
Behrens, María I.
Brusco, Luis Ignacio
Bruno, Martin
Cardona, Juan F.
Custodio, Nilton
García, Adolfo Martín
Javandel, Shireen
Lopera, Francisco
Matallana, Diana L.
Miller, Bruce
Okada de Oliveira, Maira
Pina-Escudero, Stefanie D.
Slachevsky, Andrea
Sosa Ortiz, Ana L.
Takada, Leonel T.
Tagliazuchi, Enzo
Valcour, Victor
Yokoyama, Jennifer S.
Ibañez, Agustín
author Maito, Marcelo Adrián
author_facet Maito, Marcelo Adrián
Santamaria Garcia, Hernando
Moguilner, Sebastián
Possin, Katherine L.
Godoy, María Eugenia
Avila Funes, José Alberto
Behrens, María I.
Brusco, Luis Ignacio
Bruno, Martin
Cardona, Juan F.
Custodio, Nilton
García, Adolfo Martín
Javandel, Shireen
Lopera, Francisco
Matallana, Diana L.
Miller, Bruce
Okada de Oliveira, Maira
Pina-Escudero, Stefanie D.
Slachevsky, Andrea
Sosa Ortiz, Ana L.
Takada, Leonel T.
Tagliazuchi, Enzo
Valcour, Victor
Yokoyama, Jennifer S.
Ibañez, Agustín
author_role author
author2 Santamaria Garcia, Hernando
Moguilner, Sebastián
Possin, Katherine L.
Godoy, María Eugenia
Avila Funes, José Alberto
Behrens, María I.
Brusco, Luis Ignacio
Bruno, Martin
Cardona, Juan F.
Custodio, Nilton
García, Adolfo Martín
Javandel, Shireen
Lopera, Francisco
Matallana, Diana L.
Miller, Bruce
Okada de Oliveira, Maira
Pina-Escudero, Stefanie D.
Slachevsky, Andrea
Sosa Ortiz, Ana L.
Takada, Leonel T.
Tagliazuchi, Enzo
Valcour, Victor
Yokoyama, Jennifer S.
Ibañez, Agustín
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ALZHEIMER'S DISEASE
FRONTOTEMPORAL DEMENTIA
MACHINE LEARNING
UNDERREPRESENTED SAMPLES
topic ALZHEIMER'S DISEASE
FRONTOTEMPORAL DEMENTIA
MACHINE LEARNING
UNDERREPRESENTED SAMPLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.1
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.
Fil: Maito, Marcelo Adrián. Universidad de San Andrés; Argentina
Fil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moguilner, Sebastián. Universidad de San Andrés; Argentina
Fil: Possin, Katherine L.. University of California; Estados Unidos
Fil: Godoy, María Eugenia. Universidad de San Andrés; Argentina
Fil: Avila Funes, José Alberto. Inserm; Francia. Instituto Nacional de la Nutrición Salvador Zubiran; México. Universite de Bordeaux; Francia
Fil: Behrens, María I.. Universidad de Chile; Chile
Fil: Brusco, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Cardona, Juan F.. Universidad del Valle; Colombia
Fil: Custodio, Nilton. Peruvian National Institute Of Health; Perú
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos
Fil: Javandel, Shireen. University of California; Estados Unidos
Fil: Lopera, Francisco. Universidad de Antioquia; Colombia
Fil: Matallana, Diana L.. Pontificia Universidad Javeriana; Colombia
Fil: Miller, Bruce. University of California; Estados Unidos
Fil: Okada de Oliveira, Maira. Hospital Santa Marcelina; Brasil. Universidade de Sao Paulo; Brasil. University of California; Estados Unidos
Fil: Pina-Escudero, Stefanie D.. University of California; Estados Unidos
Fil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Brain Health And Metabolism; Chile. Universidad de Chile; Chile
Fil: Sosa Ortiz, Ana L.. Instituto Nacional de Neurología y Neurocirugía; México
Fil: Takada, Leonel T.. Universidade de Sao Paulo; Brasil
Fil: Tagliazuchi, Enzo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valcour, Victor. University of California; Estados Unidos
Fil: Yokoyama, Jennifer S.. University of California; Estados Unidos
Fil: Ibañez, Agustín. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile
description Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/ NIH ( R01AG057234), Alzheimer's Association ( SG-20-725707-ReDLat), Rainwater Foundation, Takeda ( CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT ( 2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia ( BPIN2018000100059), Universidad del Valle ( CI 5316); ANID/ FONDECYT Regular ( 1210195, 1210176, 1210176); ANID/ FONDAP ( 15150012); ANID/ PIA/ ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/223143
Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-14
2667-193X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/223143
identifier_str_mv Maito, Marcelo Adrián; Santamaria Garcia, Hernando; Moguilner, Sebastián; Possin, Katherine L.; Godoy, María Eugenia; et al.; Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study; Elsevier; Lancet Regional Health - Americas; 17; 100387; 1-2023; 1-14
2667-193X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667193X22002046
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lana.2022.100387
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270168182423552
score 13.13397