In-situ polymerization of styrene in AAO nanocavities

Autores
Giussi, Juan Martín; Blaszczyk Lezak, Iwona; Cortizo, Maria Susana; Mijangos, Carmen
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One of the most promising aspects of the alumina oxide (AAO) template is the ability to generate a variety of different hierarchical one-dimensional (1D) polymer morphologies with structural definition on the nanometric scale. In-situ polymerization of monomers in reduced spaces of porous aluminum oxide (AAO) nanocavities can give rise to the direct production of versatile polymer nanostructures. In this work, porous anodic aluminum oxide (AAO) devices of 35 nm of diameter have been obtained by a two-step electrochemical anodization process and used as a nanoreactor to study the radical polymerization kinetics of styrene (St) in confinement and the results compared to those of polymerization in bulk. SEM morphological study has been conducted to establish the final structure of obtained polymer nanostructures. Confocal Raman microscopy has been performed to study the formation of the polymer through the AAO cavities as a function of time and with this methodology it has been possible to establish the monomer conversion for styrenic polymerization in AAO devices. Polystyrene obtained in the nanoreactor was characterized by SEC, NMR, TGA and DSC and the properties compared with those of bulk polymer. It was found that both the average molecular weights and polydispersity index of nanostructured polymer are lower than those obtained for bulk polymer. NMR studies have shown that the use of a reactor with nanometric size dimensions gave the obtained polystyrene greater stereospecificity than that obtained in bulk. Thermal stability and Tg values are higher for nanostructured than bulk polymers. Moreover, the methodology proposed in this work, using AAO nanocavities as nanoreactors for polymerization reaction, can be generalized and applied to obtain polymer nanostructures of very different chemical nature and morphology by choosing the appropriate monomer or monomer reactants and by tailoring the dimension of AAO cylindrical nanocavities, that is, diameter from 20 to 400 nm and length from a few to hundreds of microns.
Fil: Giussi, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Instituto en Ciencia y Tecnologia de Polimeros; España. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; Argentina
Fil: Blaszczyk Lezak, Iwona. Instituto en Ciencia y Tecnologia de Polimeros; España
Fil: Cortizo, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; Argentina
Fil: Mijangos, Carmen . Instituto en Ciencia y Tecnologia de Polimeros; España
Materia
Nanofabrication
Nanoconfinement
Microstructure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5315

id CONICETDig_29b9b8585ebf4552c7682dfdd863264a
oai_identifier_str oai:ri.conicet.gov.ar:11336/5315
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling In-situ polymerization of styrene in AAO nanocavitiesGiussi, Juan MartínBlaszczyk Lezak, IwonaCortizo, Maria SusanaMijangos, Carmen NanofabricationNanoconfinementMicrostructurehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1One of the most promising aspects of the alumina oxide (AAO) template is the ability to generate a variety of different hierarchical one-dimensional (1D) polymer morphologies with structural definition on the nanometric scale. In-situ polymerization of monomers in reduced spaces of porous aluminum oxide (AAO) nanocavities can give rise to the direct production of versatile polymer nanostructures. In this work, porous anodic aluminum oxide (AAO) devices of 35 nm of diameter have been obtained by a two-step electrochemical anodization process and used as a nanoreactor to study the radical polymerization kinetics of styrene (St) in confinement and the results compared to those of polymerization in bulk. SEM morphological study has been conducted to establish the final structure of obtained polymer nanostructures. Confocal Raman microscopy has been performed to study the formation of the polymer through the AAO cavities as a function of time and with this methodology it has been possible to establish the monomer conversion for styrenic polymerization in AAO devices. Polystyrene obtained in the nanoreactor was characterized by SEC, NMR, TGA and DSC and the properties compared with those of bulk polymer. It was found that both the average molecular weights and polydispersity index of nanostructured polymer are lower than those obtained for bulk polymer. NMR studies have shown that the use of a reactor with nanometric size dimensions gave the obtained polystyrene greater stereospecificity than that obtained in bulk. Thermal stability and Tg values are higher for nanostructured than bulk polymers. Moreover, the methodology proposed in this work, using AAO nanocavities as nanoreactors for polymerization reaction, can be generalized and applied to obtain polymer nanostructures of very different chemical nature and morphology by choosing the appropriate monomer or monomer reactants and by tailoring the dimension of AAO cylindrical nanocavities, that is, diameter from 20 to 400 nm and length from a few to hundreds of microns.Fil: Giussi, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Instituto en Ciencia y Tecnologia de Polimeros; España. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; ArgentinaFil: Blaszczyk Lezak, Iwona. Instituto en Ciencia y Tecnologia de Polimeros; EspañaFil: Cortizo, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; ArgentinaFil: Mijangos, Carmen . Instituto en Ciencia y Tecnologia de Polimeros; EspañaElsevier2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5315Giussi, Juan Martín; Blaszczyk Lezak, Iwona; Cortizo, Maria Susana; Mijangos, Carmen ; In-situ polymerization of styrene in AAO nanocavities; Elsevier; Polymer; 54; 26; 10-2013; 6886-68930032-3861enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032386113010033info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.polymer.2013.10.045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:34:16Zoai:ri.conicet.gov.ar:11336/5315instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:34:16.594CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv In-situ polymerization of styrene in AAO nanocavities
title In-situ polymerization of styrene in AAO nanocavities
spellingShingle In-situ polymerization of styrene in AAO nanocavities
Giussi, Juan Martín
Nanofabrication
Nanoconfinement
Microstructure
title_short In-situ polymerization of styrene in AAO nanocavities
title_full In-situ polymerization of styrene in AAO nanocavities
title_fullStr In-situ polymerization of styrene in AAO nanocavities
title_full_unstemmed In-situ polymerization of styrene in AAO nanocavities
title_sort In-situ polymerization of styrene in AAO nanocavities
dc.creator.none.fl_str_mv Giussi, Juan Martín
Blaszczyk Lezak, Iwona
Cortizo, Maria Susana
Mijangos, Carmen
author Giussi, Juan Martín
author_facet Giussi, Juan Martín
Blaszczyk Lezak, Iwona
Cortizo, Maria Susana
Mijangos, Carmen
author_role author
author2 Blaszczyk Lezak, Iwona
Cortizo, Maria Susana
Mijangos, Carmen
author2_role author
author
author
dc.subject.none.fl_str_mv Nanofabrication
Nanoconfinement
Microstructure
topic Nanofabrication
Nanoconfinement
Microstructure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv One of the most promising aspects of the alumina oxide (AAO) template is the ability to generate a variety of different hierarchical one-dimensional (1D) polymer morphologies with structural definition on the nanometric scale. In-situ polymerization of monomers in reduced spaces of porous aluminum oxide (AAO) nanocavities can give rise to the direct production of versatile polymer nanostructures. In this work, porous anodic aluminum oxide (AAO) devices of 35 nm of diameter have been obtained by a two-step electrochemical anodization process and used as a nanoreactor to study the radical polymerization kinetics of styrene (St) in confinement and the results compared to those of polymerization in bulk. SEM morphological study has been conducted to establish the final structure of obtained polymer nanostructures. Confocal Raman microscopy has been performed to study the formation of the polymer through the AAO cavities as a function of time and with this methodology it has been possible to establish the monomer conversion for styrenic polymerization in AAO devices. Polystyrene obtained in the nanoreactor was characterized by SEC, NMR, TGA and DSC and the properties compared with those of bulk polymer. It was found that both the average molecular weights and polydispersity index of nanostructured polymer are lower than those obtained for bulk polymer. NMR studies have shown that the use of a reactor with nanometric size dimensions gave the obtained polystyrene greater stereospecificity than that obtained in bulk. Thermal stability and Tg values are higher for nanostructured than bulk polymers. Moreover, the methodology proposed in this work, using AAO nanocavities as nanoreactors for polymerization reaction, can be generalized and applied to obtain polymer nanostructures of very different chemical nature and morphology by choosing the appropriate monomer or monomer reactants and by tailoring the dimension of AAO cylindrical nanocavities, that is, diameter from 20 to 400 nm and length from a few to hundreds of microns.
Fil: Giussi, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Instituto en Ciencia y Tecnologia de Polimeros; España. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; Argentina
Fil: Blaszczyk Lezak, Iwona. Instituto en Ciencia y Tecnologia de Polimeros; España
Fil: Cortizo, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Quimica. Laboratorio de Estudio de Compuestos Organicos; Argentina
Fil: Mijangos, Carmen . Instituto en Ciencia y Tecnologia de Polimeros; España
description One of the most promising aspects of the alumina oxide (AAO) template is the ability to generate a variety of different hierarchical one-dimensional (1D) polymer morphologies with structural definition on the nanometric scale. In-situ polymerization of monomers in reduced spaces of porous aluminum oxide (AAO) nanocavities can give rise to the direct production of versatile polymer nanostructures. In this work, porous anodic aluminum oxide (AAO) devices of 35 nm of diameter have been obtained by a two-step electrochemical anodization process and used as a nanoreactor to study the radical polymerization kinetics of styrene (St) in confinement and the results compared to those of polymerization in bulk. SEM morphological study has been conducted to establish the final structure of obtained polymer nanostructures. Confocal Raman microscopy has been performed to study the formation of the polymer through the AAO cavities as a function of time and with this methodology it has been possible to establish the monomer conversion for styrenic polymerization in AAO devices. Polystyrene obtained in the nanoreactor was characterized by SEC, NMR, TGA and DSC and the properties compared with those of bulk polymer. It was found that both the average molecular weights and polydispersity index of nanostructured polymer are lower than those obtained for bulk polymer. NMR studies have shown that the use of a reactor with nanometric size dimensions gave the obtained polystyrene greater stereospecificity than that obtained in bulk. Thermal stability and Tg values are higher for nanostructured than bulk polymers. Moreover, the methodology proposed in this work, using AAO nanocavities as nanoreactors for polymerization reaction, can be generalized and applied to obtain polymer nanostructures of very different chemical nature and morphology by choosing the appropriate monomer or monomer reactants and by tailoring the dimension of AAO cylindrical nanocavities, that is, diameter from 20 to 400 nm and length from a few to hundreds of microns.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5315
Giussi, Juan Martín; Blaszczyk Lezak, Iwona; Cortizo, Maria Susana; Mijangos, Carmen ; In-situ polymerization of styrene in AAO nanocavities; Elsevier; Polymer; 54; 26; 10-2013; 6886-6893
0032-3861
url http://hdl.handle.net/11336/5315
identifier_str_mv Giussi, Juan Martín; Blaszczyk Lezak, Iwona; Cortizo, Maria Susana; Mijangos, Carmen ; In-situ polymerization of styrene in AAO nanocavities; Elsevier; Polymer; 54; 26; 10-2013; 6886-6893
0032-3861
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032386113010033
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.polymer.2013.10.045
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781966458814464
score 12.982451