Optimality & the linear substitution calculus

Autores
Barenbaum, Pablo; Bonelli, Eduardo Augusto
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manipulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act "at a distance" and rewrites modulo a set of equations that allow substitutions to "float" in a term. We propose a notion of redex family obtained by adapting Lévy labels to support these two distinctive features. This is followed by a proof of the finite family developments theorem (FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by selection and normalisation of a linear call-by-need reduction strategy. All results are proved in the axiomatic setting of Glauert and Khashidashvili´s Deterministic Residual Structures.
Fil: Barenbaum, Pablo. Universidad de Buenos Aires; Argentina. Université Paris Diderot - Paris 7; Francia. Stevens Institute of Technology; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Stevens Institute of Technology; Estados Unidos. Universidad Nacional de Quilmes; Argentina
Materia
EXPLICIT SUBSTITUTIONS
LAMBDA CALCULUS
OPTIMAL REDUCTION
REWRITING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41112

id CONICETDig_299b84d7794686fca7792881945f7333
oai_identifier_str oai:ri.conicet.gov.ar:11336/41112
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimality & the linear substitution calculusBarenbaum, PabloBonelli, Eduardo AugustoEXPLICIT SUBSTITUTIONSLAMBDA CALCULUSOPTIMAL REDUCTIONREWRITINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manipulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act "at a distance" and rewrites modulo a set of equations that allow substitutions to "float" in a term. We propose a notion of redex family obtained by adapting Lévy labels to support these two distinctive features. This is followed by a proof of the finite family developments theorem (FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by selection and normalisation of a linear call-by-need reduction strategy. All results are proved in the axiomatic setting of Glauert and Khashidashvili´s Deterministic Residual Structures.Fil: Barenbaum, Pablo. Universidad de Buenos Aires; Argentina. Université Paris Diderot - Paris 7; Francia. Stevens Institute of Technology; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Stevens Institute of Technology; Estados Unidos. Universidad Nacional de Quilmes; ArgentinaSchloss Dagstuhl. Leibniz-Zentrum für Informatik2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41112Barenbaum, Pablo; Bonelli, Eduardo Augusto; Optimality & the linear substitution calculus; Schloss Dagstuhl. Leibniz-Zentrum für Informatik; Leibniz International Proceedings in Informatics, LIPIcs; 84; 9-2017; 1-161868-8969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4230/LIPIcs.FSCD.2017.9info:eu-repo/semantics/altIdentifier/url/http://drops.dagstuhl.de/opus/volltexte/2017/7730/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:23Zoai:ri.conicet.gov.ar:11336/41112instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:23.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimality & the linear substitution calculus
title Optimality & the linear substitution calculus
spellingShingle Optimality & the linear substitution calculus
Barenbaum, Pablo
EXPLICIT SUBSTITUTIONS
LAMBDA CALCULUS
OPTIMAL REDUCTION
REWRITING
title_short Optimality & the linear substitution calculus
title_full Optimality & the linear substitution calculus
title_fullStr Optimality & the linear substitution calculus
title_full_unstemmed Optimality & the linear substitution calculus
title_sort Optimality & the linear substitution calculus
dc.creator.none.fl_str_mv Barenbaum, Pablo
Bonelli, Eduardo Augusto
author Barenbaum, Pablo
author_facet Barenbaum, Pablo
Bonelli, Eduardo Augusto
author_role author
author2 Bonelli, Eduardo Augusto
author2_role author
dc.subject.none.fl_str_mv EXPLICIT SUBSTITUTIONS
LAMBDA CALCULUS
OPTIMAL REDUCTION
REWRITING
topic EXPLICIT SUBSTITUTIONS
LAMBDA CALCULUS
OPTIMAL REDUCTION
REWRITING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manipulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act "at a distance" and rewrites modulo a set of equations that allow substitutions to "float" in a term. We propose a notion of redex family obtained by adapting Lévy labels to support these two distinctive features. This is followed by a proof of the finite family developments theorem (FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by selection and normalisation of a linear call-by-need reduction strategy. All results are proved in the axiomatic setting of Glauert and Khashidashvili´s Deterministic Residual Structures.
Fil: Barenbaum, Pablo. Universidad de Buenos Aires; Argentina. Université Paris Diderot - Paris 7; Francia. Stevens Institute of Technology; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Stevens Institute of Technology; Estados Unidos. Universidad Nacional de Quilmes; Argentina
description We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manipulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act "at a distance" and rewrites modulo a set of equations that allow substitutions to "float" in a term. We propose a notion of redex family obtained by adapting Lévy labels to support these two distinctive features. This is followed by a proof of the finite family developments theorem (FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by selection and normalisation of a linear call-by-need reduction strategy. All results are proved in the axiomatic setting of Glauert and Khashidashvili´s Deterministic Residual Structures.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41112
Barenbaum, Pablo; Bonelli, Eduardo Augusto; Optimality & the linear substitution calculus; Schloss Dagstuhl. Leibniz-Zentrum für Informatik; Leibniz International Proceedings in Informatics, LIPIcs; 84; 9-2017; 1-16
1868-8969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41112
identifier_str_mv Barenbaum, Pablo; Bonelli, Eduardo Augusto; Optimality & the linear substitution calculus; Schloss Dagstuhl. Leibniz-Zentrum für Informatik; Leibniz International Proceedings in Informatics, LIPIcs; 84; 9-2017; 1-16
1868-8969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4230/LIPIcs.FSCD.2017.9
info:eu-repo/semantics/altIdentifier/url/http://drops.dagstuhl.de/opus/volltexte/2017/7730/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Schloss Dagstuhl. Leibniz-Zentrum für Informatik
publisher.none.fl_str_mv Schloss Dagstuhl. Leibniz-Zentrum für Informatik
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268921147686912
score 13.13397