Normalisation for higher-order calculi with explicit substitutions

Autores
Bonelli, Eduardo
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Explicit substitutions (ES) were introduced as a bridge between the theory of rewrite systems with binders and substitution, such as the λ-calculus, and their implementation. In a seminal paper Melliès observed that the dynamical properties of a rewrite system and its ES-based implementation may not coincide: he showed that a strongly normalising term (i.e. one which does not admit infinite derivations) in the λ-calculus may lose this status in its ES-based implementation. This paper studies normalisation for the latter systems in the general setting of higher-order rewriting: Based on recent work extending the theory of needed strategies to non-orthogonal rewrite systems we show that needed strategies normalise in the ES-based implementation of any orthogonal pattern higher-order rewrite system.
Facultad de Informática
Materia
Ciencias Informáticas
Explicit substitutions
Higher-order rewriting
Lamda calculus
Needed-strategies
Normalisation
Normalización
Estrategias
Cálculo
Substituciones explícitas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84837

id SEDICI_b2770a1241a21fc59ed281ab6a15da6e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84837
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Normalisation for higher-order calculi with explicit substitutionsBonelli, EduardoCiencias InformáticasExplicit substitutionsHigher-order rewritingLamda calculusNeeded-strategiesNormalisationNormalizaciónEstrategiasCálculoSubstituciones explícitasExplicit substitutions (ES) were introduced as a bridge between the theory of rewrite systems with binders and substitution, such as the λ-calculus, and their implementation. In a seminal paper Melliès observed that the dynamical properties of a rewrite system and its ES-based implementation may not coincide: he showed that a strongly normalising term (i.e. one which does not admit infinite derivations) in the λ-calculus may lose this status in its ES-based implementation. This paper studies normalisation for the latter systems in the general setting of higher-order rewriting: Based on recent work extending the theory of needed strategies to non-orthogonal rewrite systems we show that needed strategies normalise in the ES-based implementation of any orthogonal pattern higher-order rewrite system.Facultad de Informática2005-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf91-125http://sedici.unlp.edu.ar/handle/10915/84837enginfo:eu-repo/semantics/altIdentifier/issn/0304-3975info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2004.10.019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:32Zoai:sedici.unlp.edu.ar:10915/84837Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:32.3SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Normalisation for higher-order calculi with explicit substitutions
title Normalisation for higher-order calculi with explicit substitutions
spellingShingle Normalisation for higher-order calculi with explicit substitutions
Bonelli, Eduardo
Ciencias Informáticas
Explicit substitutions
Higher-order rewriting
Lamda calculus
Needed-strategies
Normalisation
Normalización
Estrategias
Cálculo
Substituciones explícitas
title_short Normalisation for higher-order calculi with explicit substitutions
title_full Normalisation for higher-order calculi with explicit substitutions
title_fullStr Normalisation for higher-order calculi with explicit substitutions
title_full_unstemmed Normalisation for higher-order calculi with explicit substitutions
title_sort Normalisation for higher-order calculi with explicit substitutions
dc.creator.none.fl_str_mv Bonelli, Eduardo
author Bonelli, Eduardo
author_facet Bonelli, Eduardo
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Explicit substitutions
Higher-order rewriting
Lamda calculus
Needed-strategies
Normalisation
Normalización
Estrategias
Cálculo
Substituciones explícitas
topic Ciencias Informáticas
Explicit substitutions
Higher-order rewriting
Lamda calculus
Needed-strategies
Normalisation
Normalización
Estrategias
Cálculo
Substituciones explícitas
dc.description.none.fl_txt_mv Explicit substitutions (ES) were introduced as a bridge between the theory of rewrite systems with binders and substitution, such as the λ-calculus, and their implementation. In a seminal paper Melliès observed that the dynamical properties of a rewrite system and its ES-based implementation may not coincide: he showed that a strongly normalising term (i.e. one which does not admit infinite derivations) in the λ-calculus may lose this status in its ES-based implementation. This paper studies normalisation for the latter systems in the general setting of higher-order rewriting: Based on recent work extending the theory of needed strategies to non-orthogonal rewrite systems we show that needed strategies normalise in the ES-based implementation of any orthogonal pattern higher-order rewrite system.
Facultad de Informática
description Explicit substitutions (ES) were introduced as a bridge between the theory of rewrite systems with binders and substitution, such as the λ-calculus, and their implementation. In a seminal paper Melliès observed that the dynamical properties of a rewrite system and its ES-based implementation may not coincide: he showed that a strongly normalising term (i.e. one which does not admit infinite derivations) in the λ-calculus may lose this status in its ES-based implementation. This paper studies normalisation for the latter systems in the general setting of higher-order rewriting: Based on recent work extending the theory of needed strategies to non-orthogonal rewrite systems we show that needed strategies normalise in the ES-based implementation of any orthogonal pattern higher-order rewrite system.
publishDate 2005
dc.date.none.fl_str_mv 2005-03-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84837
url http://sedici.unlp.edu.ar/handle/10915/84837
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0304-3975
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2004.10.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
91-125
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260361140502528
score 13.13397