Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data
- Autores
- Osores, María Soledad; Folch Duran, Arnau; Collini, Estela Angela; Villarosa, Gustavo; Durant, Adam; Pujol, Gloria; Viramonte, Jose German
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The 2008 Chaitén Volcano eruption began on 2 May 2008 with an explosive phase that injected large amounts of tephra into the atmosphere. During the first week of the eruption, volcanic ash clouds were transported for hundreds of kilometres over Argentina by the prevailing westerly winds. Tephra deposition extended to the Atlantic Ocean and severely affected the Argentinean Patagonia. Impacts included air and water quality degradation, disruption of ground transportation systems and cancellation of flights at airports more than 1,500 km apart. We use the FALL3D tephra transport model coupled with the Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) meteorological model to simulate tephra fall from the 2-9 May 2008 eruptive period. Our hindcast results are in good agreement with satellite imagery and reproduce ground deposit observations. Key aspects of our analysis, not considered during syn-eruptive forecasts, are the re-initialization of each simulation with actualized meteorological forecast cycles and better constrained model inputs including column heights (inferred from reanalysis of GOES-10 imagery and nearby atmospheric soundings) and granulometric data obtained from field campaigns. This study shows the potential of coupling WRF/ARW and FALL3D models for short-term forecast of volcanic ash clouds. Our results highlight that, in order to improve forecasting of ash cloud dispersion and tephra deposition, it is essential to implement an operational observation system to measure temporal variations of column height and granulometric characteristics of tephra particles in nearly real-time, at proximal as well as distal locations.
La erupción del volcán Chaitén se inició el 2 de Mayo de 2008 con una fase explosiva que inyectó grandes cantidades de tefra a la atmósfera. Durante la primera semana de erupción, se dispersaron nubes volcánicas por cientos de kilómetros sobre Argentina, siguiendo los vientos dominantes del oeste. El depósito de tefra se extendió hasta el océano Atlántico y afectó severamente a la Patagonia. Los impactos incluyen degradación de la calidad del aire y el agua, interrupción del sistema de transporte terrestre y la cancelación de vuelos incluso en aeropuertos a 1.500 km del volcán. Aquí se usó el modelo FALL3D de transporte y depósito de tefra con el modelo meteorológico Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) para simular el período eruptivo del 2 al 9 de mayo de 2008. Los resultados obtenidos del pronóstico retrospectivo tienen una buena concordancia con las imágenes satelitales y reprodujeron las observaciones de depósito en superficie. Los aspectos claves de este análisis, no considerado durante los pronósticos contemporáneos, son la reinicialización de cada simulación con ciclos de pronósticos actualizados y condiciones iniciales del modelo más ajustadas, incluyendo alturas de columna eruptiva (inferidas a través del análisis de imágenes satelitales GOES-10 y radiosondeos cercanos) y datos granulométricos obtenidos a partir de campañas de campo. Este estudio muestra el gran potencial que tiene el acoplar el modelo WRF/ARW con el FALL3D para generar pronósticos a corto plazo de la nube volcánica. Los resultados presentados revelan que, para mejorar los pronósticos de dispersión y depósito de tefra, es esencial implementar un sistema de observación operativo con el fin de medir las variaciones temporales de la altura de columna y las características granulométricas de las partículas de tefra casi en tiempo real, tanto en lugares próximos como lejanos al volcán.
Fil: Osores, María Soledad. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente; Argentina
Fil: Durant, Adam. Norwegian Institute for Air Research; Noruega. Michigan Technological University; Estados Unidos. University of Cambridge; Reino Unido
Fil: Pujol, Gloria. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina - Materia
-
CHAITÉN ERUPTION
FALL3D MODEL
ASH DISPERSION
GROUND DEPOSITION
GRANULOMETRY
RISK MANAGEMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22302
Ver los metadatos del registro completo
id |
CONICETDig_28eebe2c887f5b440ebb67b02a1ffe60 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22302 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite dataValidación del modelo FALL3D para la erupción del Chaitén en 2008 usando datos satelitales y de campoOsores, María SoledadFolch Duran, ArnauCollini, Estela AngelaVillarosa, GustavoDurant, AdamPujol, GloriaViramonte, Jose GermanCHAITÉN ERUPTIONFALL3D MODELASH DISPERSIONGROUND DEPOSITIONGRANULOMETRYRISK MANAGEMENThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The 2008 Chaitén Volcano eruption began on 2 May 2008 with an explosive phase that injected large amounts of tephra into the atmosphere. During the first week of the eruption, volcanic ash clouds were transported for hundreds of kilometres over Argentina by the prevailing westerly winds. Tephra deposition extended to the Atlantic Ocean and severely affected the Argentinean Patagonia. Impacts included air and water quality degradation, disruption of ground transportation systems and cancellation of flights at airports more than 1,500 km apart. We use the FALL3D tephra transport model coupled with the Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) meteorological model to simulate tephra fall from the 2-9 May 2008 eruptive period. Our hindcast results are in good agreement with satellite imagery and reproduce ground deposit observations. Key aspects of our analysis, not considered during syn-eruptive forecasts, are the re-initialization of each simulation with actualized meteorological forecast cycles and better constrained model inputs including column heights (inferred from reanalysis of GOES-10 imagery and nearby atmospheric soundings) and granulometric data obtained from field campaigns. This study shows the potential of coupling WRF/ARW and FALL3D models for short-term forecast of volcanic ash clouds. Our results highlight that, in order to improve forecasting of ash cloud dispersion and tephra deposition, it is essential to implement an operational observation system to measure temporal variations of column height and granulometric characteristics of tephra particles in nearly real-time, at proximal as well as distal locations.La erupción del volcán Chaitén se inició el 2 de Mayo de 2008 con una fase explosiva que inyectó grandes cantidades de tefra a la atmósfera. Durante la primera semana de erupción, se dispersaron nubes volcánicas por cientos de kilómetros sobre Argentina, siguiendo los vientos dominantes del oeste. El depósito de tefra se extendió hasta el océano Atlántico y afectó severamente a la Patagonia. Los impactos incluyen degradación de la calidad del aire y el agua, interrupción del sistema de transporte terrestre y la cancelación de vuelos incluso en aeropuertos a 1.500 km del volcán. Aquí se usó el modelo FALL3D de transporte y depósito de tefra con el modelo meteorológico Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) para simular el período eruptivo del 2 al 9 de mayo de 2008. Los resultados obtenidos del pronóstico retrospectivo tienen una buena concordancia con las imágenes satelitales y reprodujeron las observaciones de depósito en superficie. Los aspectos claves de este análisis, no considerado durante los pronósticos contemporáneos, son la reinicialización de cada simulación con ciclos de pronósticos actualizados y condiciones iniciales del modelo más ajustadas, incluyendo alturas de columna eruptiva (inferidas a través del análisis de imágenes satelitales GOES-10 y radiosondeos cercanos) y datos granulométricos obtenidos a partir de campañas de campo. Este estudio muestra el gran potencial que tiene el acoplar el modelo WRF/ARW con el FALL3D para generar pronósticos a corto plazo de la nube volcánica. Los resultados presentados revelan que, para mejorar los pronósticos de dispersión y depósito de tefra, es esencial implementar un sistema de observación operativo con el fin de medir las variaciones temporales de la altura de columna y las características granulométricas de las partículas de tefra casi en tiempo real, tanto en lugares próximos como lejanos al volcán.Fil: Osores, María Soledad. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente; ArgentinaFil: Durant, Adam. Norwegian Institute for Air Research; Noruega. Michigan Technological University; Estados Unidos. University of Cambridge; Reino UnidoFil: Pujol, Gloria. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaServicio Nacional Geologia y Minería2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22302Osores, María Soledad; Folch Duran, Arnau; Collini, Estela Angela; Villarosa, Gustavo; Durant, Adam; et al.; Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data; Servicio Nacional Geologia y Minería; Andean Geology; 40; 2; 5-2013; 262-2760718-70920718-7106CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5027/andgeoV40n2-a05info:eu-repo/semantics/altIdentifier/url/http://www.andeangeology.cl/index.php/revista1/article/view/2452info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/w9k9thinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:22Zoai:ri.conicet.gov.ar:11336/22302instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:23.242CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data Validación del modelo FALL3D para la erupción del Chaitén en 2008 usando datos satelitales y de campo |
title |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
spellingShingle |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data Osores, María Soledad CHAITÉN ERUPTION FALL3D MODEL ASH DISPERSION GROUND DEPOSITION GRANULOMETRY RISK MANAGEMENT |
title_short |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
title_full |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
title_fullStr |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
title_full_unstemmed |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
title_sort |
Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data |
dc.creator.none.fl_str_mv |
Osores, María Soledad Folch Duran, Arnau Collini, Estela Angela Villarosa, Gustavo Durant, Adam Pujol, Gloria Viramonte, Jose German |
author |
Osores, María Soledad |
author_facet |
Osores, María Soledad Folch Duran, Arnau Collini, Estela Angela Villarosa, Gustavo Durant, Adam Pujol, Gloria Viramonte, Jose German |
author_role |
author |
author2 |
Folch Duran, Arnau Collini, Estela Angela Villarosa, Gustavo Durant, Adam Pujol, Gloria Viramonte, Jose German |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CHAITÉN ERUPTION FALL3D MODEL ASH DISPERSION GROUND DEPOSITION GRANULOMETRY RISK MANAGEMENT |
topic |
CHAITÉN ERUPTION FALL3D MODEL ASH DISPERSION GROUND DEPOSITION GRANULOMETRY RISK MANAGEMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The 2008 Chaitén Volcano eruption began on 2 May 2008 with an explosive phase that injected large amounts of tephra into the atmosphere. During the first week of the eruption, volcanic ash clouds were transported for hundreds of kilometres over Argentina by the prevailing westerly winds. Tephra deposition extended to the Atlantic Ocean and severely affected the Argentinean Patagonia. Impacts included air and water quality degradation, disruption of ground transportation systems and cancellation of flights at airports more than 1,500 km apart. We use the FALL3D tephra transport model coupled with the Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) meteorological model to simulate tephra fall from the 2-9 May 2008 eruptive period. Our hindcast results are in good agreement with satellite imagery and reproduce ground deposit observations. Key aspects of our analysis, not considered during syn-eruptive forecasts, are the re-initialization of each simulation with actualized meteorological forecast cycles and better constrained model inputs including column heights (inferred from reanalysis of GOES-10 imagery and nearby atmospheric soundings) and granulometric data obtained from field campaigns. This study shows the potential of coupling WRF/ARW and FALL3D models for short-term forecast of volcanic ash clouds. Our results highlight that, in order to improve forecasting of ash cloud dispersion and tephra deposition, it is essential to implement an operational observation system to measure temporal variations of column height and granulometric characteristics of tephra particles in nearly real-time, at proximal as well as distal locations. La erupción del volcán Chaitén se inició el 2 de Mayo de 2008 con una fase explosiva que inyectó grandes cantidades de tefra a la atmósfera. Durante la primera semana de erupción, se dispersaron nubes volcánicas por cientos de kilómetros sobre Argentina, siguiendo los vientos dominantes del oeste. El depósito de tefra se extendió hasta el océano Atlántico y afectó severamente a la Patagonia. Los impactos incluyen degradación de la calidad del aire y el agua, interrupción del sistema de transporte terrestre y la cancelación de vuelos incluso en aeropuertos a 1.500 km del volcán. Aquí se usó el modelo FALL3D de transporte y depósito de tefra con el modelo meteorológico Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) para simular el período eruptivo del 2 al 9 de mayo de 2008. Los resultados obtenidos del pronóstico retrospectivo tienen una buena concordancia con las imágenes satelitales y reprodujeron las observaciones de depósito en superficie. Los aspectos claves de este análisis, no considerado durante los pronósticos contemporáneos, son la reinicialización de cada simulación con ciclos de pronósticos actualizados y condiciones iniciales del modelo más ajustadas, incluyendo alturas de columna eruptiva (inferidas a través del análisis de imágenes satelitales GOES-10 y radiosondeos cercanos) y datos granulométricos obtenidos a partir de campañas de campo. Este estudio muestra el gran potencial que tiene el acoplar el modelo WRF/ARW con el FALL3D para generar pronósticos a corto plazo de la nube volcánica. Los resultados presentados revelan que, para mejorar los pronósticos de dispersión y depósito de tefra, es esencial implementar un sistema de observación operativo con el fin de medir las variaciones temporales de la altura de columna y las características granulométricas de las partículas de tefra casi en tiempo real, tanto en lugares próximos como lejanos al volcán. Fil: Osores, María Soledad. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina Fil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente; Argentina Fil: Durant, Adam. Norwegian Institute for Air Research; Noruega. Michigan Technological University; Estados Unidos. University of Cambridge; Reino Unido Fil: Pujol, Gloria. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina Fil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina |
description |
The 2008 Chaitén Volcano eruption began on 2 May 2008 with an explosive phase that injected large amounts of tephra into the atmosphere. During the first week of the eruption, volcanic ash clouds were transported for hundreds of kilometres over Argentina by the prevailing westerly winds. Tephra deposition extended to the Atlantic Ocean and severely affected the Argentinean Patagonia. Impacts included air and water quality degradation, disruption of ground transportation systems and cancellation of flights at airports more than 1,500 km apart. We use the FALL3D tephra transport model coupled with the Weather Research and Forecasting-Advanced Research Weather (WRF-ARW) meteorological model to simulate tephra fall from the 2-9 May 2008 eruptive period. Our hindcast results are in good agreement with satellite imagery and reproduce ground deposit observations. Key aspects of our analysis, not considered during syn-eruptive forecasts, are the re-initialization of each simulation with actualized meteorological forecast cycles and better constrained model inputs including column heights (inferred from reanalysis of GOES-10 imagery and nearby atmospheric soundings) and granulometric data obtained from field campaigns. This study shows the potential of coupling WRF/ARW and FALL3D models for short-term forecast of volcanic ash clouds. Our results highlight that, in order to improve forecasting of ash cloud dispersion and tephra deposition, it is essential to implement an operational observation system to measure temporal variations of column height and granulometric characteristics of tephra particles in nearly real-time, at proximal as well as distal locations. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22302 Osores, María Soledad; Folch Duran, Arnau; Collini, Estela Angela; Villarosa, Gustavo; Durant, Adam; et al.; Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data; Servicio Nacional Geologia y Minería; Andean Geology; 40; 2; 5-2013; 262-276 0718-7092 0718-7106 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22302 |
identifier_str_mv |
Osores, María Soledad; Folch Duran, Arnau; Collini, Estela Angela; Villarosa, Gustavo; Durant, Adam; et al.; Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data; Servicio Nacional Geologia y Minería; Andean Geology; 40; 2; 5-2013; 262-276 0718-7092 0718-7106 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5027/andgeoV40n2-a05 info:eu-repo/semantics/altIdentifier/url/http://www.andeangeology.cl/index.php/revista1/article/view/2452 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/w9k9th |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Servicio Nacional Geologia y Minería |
publisher.none.fl_str_mv |
Servicio Nacional Geologia y Minería |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613307481194496 |
score |
13.070432 |