Volcanic ash classification from satellite data: Ubinas eruption case study

Autores
Rodríguez, Diana Marina; Díaz, Juan Augusto; Maurizi, Micaela; Osores, María Soledad; Vidal, Luciano
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.
The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC.
Materia
VOLCANIC ASH CLASSIFICATION
SATELLITE DATA
UBINAS ERUPTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
El Abrigo
Institución
Servicio Meteorológico Nacional
OAI Identificador
oai:repositorio.smn.gob.ar:20.500.12160/2655

id ELABRIGO_3de2f91e7f7992e4a2ee46893db83b5f
oai_identifier_str oai:repositorio.smn.gob.ar:20.500.12160/2655
network_acronym_str ELABRIGO
repository_id_str 3915
network_name_str El Abrigo
spelling Volcanic ash classification from satellite data: Ubinas eruption case studyRodríguez, Diana MarinaDíaz, Juan AugustoMaurizi, MicaelaOsores, María SoledadVidal, LucianoVOLCANIC ASH CLASSIFICATIONSATELLITE DATAUBINAS ERUPTIONFil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC.Servicio Meteorológico Nacional2023-12-28T17:41:29Z2023-12-28T17:41:29Z2023-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12160/2655enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:El Abrigoinstname:Servicio Meteorológico Nacional2025-09-29T14:28:55Zoai:repositorio.smn.gob.ar:20.500.12160/2655instacron:SMNInstitucionalhttp://repositorio.smn.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.smn.gob.ar/oai/requestmacevedo@smn.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:39152025-09-29 14:28:55.553El Abrigo - Servicio Meteorológico Nacionalfalse
dc.title.none.fl_str_mv Volcanic ash classification from satellite data: Ubinas eruption case study
title Volcanic ash classification from satellite data: Ubinas eruption case study
spellingShingle Volcanic ash classification from satellite data: Ubinas eruption case study
Rodríguez, Diana Marina
VOLCANIC ASH CLASSIFICATION
SATELLITE DATA
UBINAS ERUPTION
title_short Volcanic ash classification from satellite data: Ubinas eruption case study
title_full Volcanic ash classification from satellite data: Ubinas eruption case study
title_fullStr Volcanic ash classification from satellite data: Ubinas eruption case study
title_full_unstemmed Volcanic ash classification from satellite data: Ubinas eruption case study
title_sort Volcanic ash classification from satellite data: Ubinas eruption case study
dc.creator.none.fl_str_mv Rodríguez, Diana Marina
Díaz, Juan Augusto
Maurizi, Micaela
Osores, María Soledad
Vidal, Luciano
author Rodríguez, Diana Marina
author_facet Rodríguez, Diana Marina
Díaz, Juan Augusto
Maurizi, Micaela
Osores, María Soledad
Vidal, Luciano
author_role author
author2 Díaz, Juan Augusto
Maurizi, Micaela
Osores, María Soledad
Vidal, Luciano
author2_role author
author
author
author
dc.subject.none.fl_str_mv VOLCANIC ASH CLASSIFICATION
SATELLITE DATA
UBINAS ERUPTION
topic VOLCANIC ASH CLASSIFICATION
SATELLITE DATA
UBINAS ERUPTION
dc.description.none.fl_txt_mv Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.
The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC.
description Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-28T17:41:29Z
2023-12-28T17:41:29Z
2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12160/2655
url http://hdl.handle.net/20.500.12160/2655
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Servicio Meteorológico Nacional
publisher.none.fl_str_mv Servicio Meteorológico Nacional
dc.source.none.fl_str_mv reponame:El Abrigo
instname:Servicio Meteorológico Nacional
reponame_str El Abrigo
collection El Abrigo
instname_str Servicio Meteorológico Nacional
repository.name.fl_str_mv El Abrigo - Servicio Meteorológico Nacional
repository.mail.fl_str_mv macevedo@smn.gov.ar
_version_ 1844621642057121792
score 12.559606