Volcanic ash classification from satellite data: Ubinas eruption case study
- Autores
- Rodríguez, Diana Marina; Díaz, Juan Augusto; Maurizi, Micaela; Osores, María Soledad; Vidal, Luciano
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.
The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC. - Materia
-
VOLCANIC ASH CLASSIFICATION
SATELLITE DATA
UBINAS ERUPTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Servicio Meteorológico Nacional
- OAI Identificador
- oai:repositorio.smn.gob.ar:20.500.12160/2655
Ver los metadatos del registro completo
id |
ELABRIGO_3de2f91e7f7992e4a2ee46893db83b5f |
---|---|
oai_identifier_str |
oai:repositorio.smn.gob.ar:20.500.12160/2655 |
network_acronym_str |
ELABRIGO |
repository_id_str |
3915 |
network_name_str |
El Abrigo |
spelling |
Volcanic ash classification from satellite data: Ubinas eruption case studyRodríguez, Diana MarinaDíaz, Juan AugustoMaurizi, MicaelaOsores, María SoledadVidal, LucianoVOLCANIC ASH CLASSIFICATIONSATELLITE DATAUBINAS ERUPTIONFil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC.Servicio Meteorológico Nacional2023-12-28T17:41:29Z2023-12-28T17:41:29Z2023-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12160/2655enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:El Abrigoinstname:Servicio Meteorológico Nacional2025-09-29T14:28:55Zoai:repositorio.smn.gob.ar:20.500.12160/2655instacron:SMNInstitucionalhttp://repositorio.smn.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.smn.gob.ar/oai/requestmacevedo@smn.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:39152025-09-29 14:28:55.553El Abrigo - Servicio Meteorológico Nacionalfalse |
dc.title.none.fl_str_mv |
Volcanic ash classification from satellite data: Ubinas eruption case study |
title |
Volcanic ash classification from satellite data: Ubinas eruption case study |
spellingShingle |
Volcanic ash classification from satellite data: Ubinas eruption case study Rodríguez, Diana Marina VOLCANIC ASH CLASSIFICATION SATELLITE DATA UBINAS ERUPTION |
title_short |
Volcanic ash classification from satellite data: Ubinas eruption case study |
title_full |
Volcanic ash classification from satellite data: Ubinas eruption case study |
title_fullStr |
Volcanic ash classification from satellite data: Ubinas eruption case study |
title_full_unstemmed |
Volcanic ash classification from satellite data: Ubinas eruption case study |
title_sort |
Volcanic ash classification from satellite data: Ubinas eruption case study |
dc.creator.none.fl_str_mv |
Rodríguez, Diana Marina Díaz, Juan Augusto Maurizi, Micaela Osores, María Soledad Vidal, Luciano |
author |
Rodríguez, Diana Marina |
author_facet |
Rodríguez, Diana Marina Díaz, Juan Augusto Maurizi, Micaela Osores, María Soledad Vidal, Luciano |
author_role |
author |
author2 |
Díaz, Juan Augusto Maurizi, Micaela Osores, María Soledad Vidal, Luciano |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
VOLCANIC ASH CLASSIFICATION SATELLITE DATA UBINAS ERUPTION |
topic |
VOLCANIC ASH CLASSIFICATION SATELLITE DATA UBINAS ERUPTION |
dc.description.none.fl_txt_mv |
Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. The dispersion of volcanic ash in the atmosphere, caused by eruptions or resuspension, is a threat to aviation. Volcanic Ash Advisory Centers (VAACs) monitor and track volcanic clouds through remote sensing and forecast the dispersion and report them through Volcanic Ash Advisories (VAA). In the next years, there will be a major shift in the production of VAACs, with the introduction of Quantitative Volcanic Ash Information (QVA). QVA will allow users to make decisions based on ensemble-based forecasts of ash concentration. To provide a quality product, it is necessary to verify them using observed data. The proper detectiodifferencessification of volcanic ash in the atmosphere using remote sensing data will allow the verification of modeled ash mass loading results, using the the discernible ash threshold as a first step, and subsequently against the satellite estimations of ash mass loading. In this work, different methodologies are studied to classify scenes with volcanic ash, based on brightness temperature differences using 2, 3, and 5 infrared bands, from the ABI sensor aboard the GOES-16 satellite and the VIIRS sensor aboard the NOAA-20 satellite. The eruption of the Ubinas Volcano in Perú on July 19, 2019, is taken as a case study. The results of this work will contribute to the development of the QVA information verification system for the Buenos Aires VAAC. |
description |
Fil: Rodríguez, Diana Marina. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-28T17:41:29Z 2023-12-28T17:41:29Z 2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12160/2655 |
url |
http://hdl.handle.net/20.500.12160/2655 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Servicio Meteorológico Nacional |
publisher.none.fl_str_mv |
Servicio Meteorológico Nacional |
dc.source.none.fl_str_mv |
reponame:El Abrigo instname:Servicio Meteorológico Nacional |
reponame_str |
El Abrigo |
collection |
El Abrigo |
instname_str |
Servicio Meteorológico Nacional |
repository.name.fl_str_mv |
El Abrigo - Servicio Meteorológico Nacional |
repository.mail.fl_str_mv |
macevedo@smn.gov.ar |
_version_ |
1844621642057121792 |
score |
12.559606 |