Entropic relations for retrodicted quantum measurements
- Autores
- Budini, Adrian Adolfo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an arbitrary measurement over a system of interest, the outcome of a posterior measurement can be used for improving the statistical estimation of the system state after the former measurement. Here, we realize an informational-entropic study of this kind of (Bayesian) retrodicted quantum measurement formulated in the context of quantum state smoothing. We show that the (average) entropy of the system state after the retrodicted measurement (smoothed state) is bounded from below and above by the entropies of the first measurement when performed in a selective and nonselective standard predictive way, respectively. For bipartite systems the same property is also valid for each subsystem. Their mutual information, in the case of a former single projective measurement, is also bounded in a similar way. The corresponding inequalities provide a kind of retrodicted extension of Holevo bound for quantum communication channels. These results quantify how much information gain is obtained through retrodicted quantum measurements in quantum state smoothing. While an entropic reduction is always granted, in bipartite systems mutual information may be degraded. Relevant physical examples confirm these features.
Fil: Budini, Adrian Adolfo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
Foundations of quantum mechanics, measurement theory
Quantum communication
State reconstruction, quantum tomography - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94432
Ver los metadatos del registro completo
id |
CONICETDig_28c9d29cc5087f5245e002edb73fab6d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94432 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropic relations for retrodicted quantum measurementsBudini, Adrian AdolfoFoundations of quantum mechanics, measurement theoryQuantum communicationState reconstruction, quantum tomographyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Given an arbitrary measurement over a system of interest, the outcome of a posterior measurement can be used for improving the statistical estimation of the system state after the former measurement. Here, we realize an informational-entropic study of this kind of (Bayesian) retrodicted quantum measurement formulated in the context of quantum state smoothing. We show that the (average) entropy of the system state after the retrodicted measurement (smoothed state) is bounded from below and above by the entropies of the first measurement when performed in a selective and nonselective standard predictive way, respectively. For bipartite systems the same property is also valid for each subsystem. Their mutual information, in the case of a former single projective measurement, is also bounded in a similar way. The corresponding inequalities provide a kind of retrodicted extension of Holevo bound for quantum communication channels. These results quantify how much information gain is obtained through retrodicted quantum measurements in quantum state smoothing. While an entropic reduction is always granted, in bipartite systems mutual information may be degraded. Relevant physical examples confirm these features.Fil: Budini, Adrian Adolfo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94432Budini, Adrian Adolfo; Entropic relations for retrodicted quantum measurements; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 1; 1-2018; 12132-121322469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.97.012132info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.012132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:38Zoai:ri.conicet.gov.ar:11336/94432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:38.691CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropic relations for retrodicted quantum measurements |
title |
Entropic relations for retrodicted quantum measurements |
spellingShingle |
Entropic relations for retrodicted quantum measurements Budini, Adrian Adolfo Foundations of quantum mechanics, measurement theory Quantum communication State reconstruction, quantum tomography |
title_short |
Entropic relations for retrodicted quantum measurements |
title_full |
Entropic relations for retrodicted quantum measurements |
title_fullStr |
Entropic relations for retrodicted quantum measurements |
title_full_unstemmed |
Entropic relations for retrodicted quantum measurements |
title_sort |
Entropic relations for retrodicted quantum measurements |
dc.creator.none.fl_str_mv |
Budini, Adrian Adolfo |
author |
Budini, Adrian Adolfo |
author_facet |
Budini, Adrian Adolfo |
author_role |
author |
dc.subject.none.fl_str_mv |
Foundations of quantum mechanics, measurement theory Quantum communication State reconstruction, quantum tomography |
topic |
Foundations of quantum mechanics, measurement theory Quantum communication State reconstruction, quantum tomography |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an arbitrary measurement over a system of interest, the outcome of a posterior measurement can be used for improving the statistical estimation of the system state after the former measurement. Here, we realize an informational-entropic study of this kind of (Bayesian) retrodicted quantum measurement formulated in the context of quantum state smoothing. We show that the (average) entropy of the system state after the retrodicted measurement (smoothed state) is bounded from below and above by the entropies of the first measurement when performed in a selective and nonselective standard predictive way, respectively. For bipartite systems the same property is also valid for each subsystem. Their mutual information, in the case of a former single projective measurement, is also bounded in a similar way. The corresponding inequalities provide a kind of retrodicted extension of Holevo bound for quantum communication channels. These results quantify how much information gain is obtained through retrodicted quantum measurements in quantum state smoothing. While an entropic reduction is always granted, in bipartite systems mutual information may be degraded. Relevant physical examples confirm these features. Fil: Budini, Adrian Adolfo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
Given an arbitrary measurement over a system of interest, the outcome of a posterior measurement can be used for improving the statistical estimation of the system state after the former measurement. Here, we realize an informational-entropic study of this kind of (Bayesian) retrodicted quantum measurement formulated in the context of quantum state smoothing. We show that the (average) entropy of the system state after the retrodicted measurement (smoothed state) is bounded from below and above by the entropies of the first measurement when performed in a selective and nonselective standard predictive way, respectively. For bipartite systems the same property is also valid for each subsystem. Their mutual information, in the case of a former single projective measurement, is also bounded in a similar way. The corresponding inequalities provide a kind of retrodicted extension of Holevo bound for quantum communication channels. These results quantify how much information gain is obtained through retrodicted quantum measurements in quantum state smoothing. While an entropic reduction is always granted, in bipartite systems mutual information may be degraded. Relevant physical examples confirm these features. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94432 Budini, Adrian Adolfo; Entropic relations for retrodicted quantum measurements; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 1; 1-2018; 12132-12132 2469-9926 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/94432 |
identifier_str_mv |
Budini, Adrian Adolfo; Entropic relations for retrodicted quantum measurements; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 1; 1-2018; 12132-12132 2469-9926 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.97.012132 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.012132 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269532249391104 |
score |
12.885934 |