On a generalized entropic uncertainty relation in the case of the qubit

Autores
Zozor, Steeve; Bosyk, Gustavo Martín; Portesi, Mariela Adelina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.
Instituto de Física La Plata
Materia
Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132336

id SEDICI_1d20e660ea7689fb0fda89158878051a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132336
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On a generalized entropic uncertainty relation in the case of the qubitZozor, SteeveBosyk, Gustavo MartínPortesi, Mariela AdelinaFísicaFoundations of quantum mechanics; measurement theoryEntropy and other measures of informationFormalismQuantum systems with finite Hilbert spaceWe revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.Instituto de Física La Plata2013-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132336enginfo:eu-repo/semantics/altIdentifier/issn/1751-8113info:eu-repo/semantics/altIdentifier/issn/1751-8121info:eu-repo/semantics/altIdentifier/arxiv/1306.0409info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/46/465301info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:23:09Zoai:sedici.unlp.edu.ar:10915/132336Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:23:09.72SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On a generalized entropic uncertainty relation in the case of the qubit
title On a generalized entropic uncertainty relation in the case of the qubit
spellingShingle On a generalized entropic uncertainty relation in the case of the qubit
Zozor, Steeve
Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
title_short On a generalized entropic uncertainty relation in the case of the qubit
title_full On a generalized entropic uncertainty relation in the case of the qubit
title_fullStr On a generalized entropic uncertainty relation in the case of the qubit
title_full_unstemmed On a generalized entropic uncertainty relation in the case of the qubit
title_sort On a generalized entropic uncertainty relation in the case of the qubit
dc.creator.none.fl_str_mv Zozor, Steeve
Bosyk, Gustavo Martín
Portesi, Mariela Adelina
author Zozor, Steeve
author_facet Zozor, Steeve
Bosyk, Gustavo Martín
Portesi, Mariela Adelina
author_role author
author2 Bosyk, Gustavo Martín
Portesi, Mariela Adelina
author2_role author
author
dc.subject.none.fl_str_mv Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
topic Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
dc.description.none.fl_txt_mv We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.
Instituto de Física La Plata
description We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.
publishDate 2013
dc.date.none.fl_str_mv 2013-11-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132336
url http://sedici.unlp.edu.ar/handle/10915/132336
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1751-8113
info:eu-repo/semantics/altIdentifier/issn/1751-8121
info:eu-repo/semantics/altIdentifier/arxiv/1306.0409
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/46/465301
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064286779047936
score 13.22299