On a generalized entropic uncertainty relation in the case of the qubit
- Autores
- Zozor, Steeve; Bosyk, Gustavo Martín; Portesi, Mariela Adelina
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.
Instituto de Física La Plata - Materia
-
Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/132336
Ver los metadatos del registro completo
id |
SEDICI_1d20e660ea7689fb0fda89158878051a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/132336 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On a generalized entropic uncertainty relation in the case of the qubitZozor, SteeveBosyk, Gustavo MartínPortesi, Mariela AdelinaFísicaFoundations of quantum mechanics; measurement theoryEntropy and other measures of informationFormalismQuantum systems with finite Hilbert spaceWe revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.Instituto de Física La Plata2013-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132336enginfo:eu-repo/semantics/altIdentifier/issn/1751-8113info:eu-repo/semantics/altIdentifier/issn/1751-8121info:eu-repo/semantics/altIdentifier/arxiv/1306.0409info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/46/465301info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:23:09Zoai:sedici.unlp.edu.ar:10915/132336Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:23:09.72SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On a generalized entropic uncertainty relation in the case of the qubit |
title |
On a generalized entropic uncertainty relation in the case of the qubit |
spellingShingle |
On a generalized entropic uncertainty relation in the case of the qubit Zozor, Steeve Física Foundations of quantum mechanics; measurement theory Entropy and other measures of information Formalism Quantum systems with finite Hilbert space |
title_short |
On a generalized entropic uncertainty relation in the case of the qubit |
title_full |
On a generalized entropic uncertainty relation in the case of the qubit |
title_fullStr |
On a generalized entropic uncertainty relation in the case of the qubit |
title_full_unstemmed |
On a generalized entropic uncertainty relation in the case of the qubit |
title_sort |
On a generalized entropic uncertainty relation in the case of the qubit |
dc.creator.none.fl_str_mv |
Zozor, Steeve Bosyk, Gustavo Martín Portesi, Mariela Adelina |
author |
Zozor, Steeve |
author_facet |
Zozor, Steeve Bosyk, Gustavo Martín Portesi, Mariela Adelina |
author_role |
author |
author2 |
Bosyk, Gustavo Martín Portesi, Mariela Adelina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Foundations of quantum mechanics; measurement theory Entropy and other measures of information Formalism Quantum systems with finite Hilbert space |
topic |
Física Foundations of quantum mechanics; measurement theory Entropy and other measures of information Formalism Quantum systems with finite Hilbert space |
dc.description.none.fl_txt_mv |
We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states. Instituto de Física La Plata |
description |
We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/132336 |
url |
http://sedici.unlp.edu.ar/handle/10915/132336 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1751-8113 info:eu-repo/semantics/altIdentifier/issn/1751-8121 info:eu-repo/semantics/altIdentifier/arxiv/1306.0409 info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/46/465301 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064286779047936 |
score |
13.22299 |