Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
- Autores
- Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.
Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
OPTO-ACOUSTIC DEVICE
OPTO-ACOUSTIC METAMATERIAL
PHOXONIC CRYSTAL
POROUS SILICON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/185053
Ver los metadatos del registro completo
id |
CONICETDig_287ac8f2f989de3adea5b7ed87c3a672 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/185053 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystalsForzani, LuisinaMendez, Carlos GustavoUrteaga, RaulHuespe, Alfredo EdmundoOPTO-ACOUSTIC DEVICEOPTO-ACOUSTIC METAMATERIALPHOXONIC CRYSTALPOROUS SILICONhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185053Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-240924-4247CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0924424721003800info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2021.112915info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:03Zoai:ri.conicet.gov.ar:11336/185053instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:03.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
title |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
spellingShingle |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals Forzani, Luisina OPTO-ACOUSTIC DEVICE OPTO-ACOUSTIC METAMATERIAL PHOXONIC CRYSTAL POROUS SILICON |
title_short |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
title_full |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
title_fullStr |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
title_full_unstemmed |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
title_sort |
Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals |
dc.creator.none.fl_str_mv |
Forzani, Luisina Mendez, Carlos Gustavo Urteaga, Raul Huespe, Alfredo Edmundo |
author |
Forzani, Luisina |
author_facet |
Forzani, Luisina Mendez, Carlos Gustavo Urteaga, Raul Huespe, Alfredo Edmundo |
author_role |
author |
author2 |
Mendez, Carlos Gustavo Urteaga, Raul Huespe, Alfredo Edmundo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
OPTO-ACOUSTIC DEVICE OPTO-ACOUSTIC METAMATERIAL PHOXONIC CRYSTAL POROUS SILICON |
topic |
OPTO-ACOUSTIC DEVICE OPTO-ACOUSTIC METAMATERIAL PHOXONIC CRYSTAL POROUS SILICON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response. Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
description |
We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/185053 Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-24 0924-4247 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/185053 |
identifier_str_mv |
Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-24 0924-4247 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0924424721003800 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2021.112915 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614177320075264 |
score |
13.260194 |