Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals

Autores
Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.
Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Materia
OPTO-ACOUSTIC DEVICE
OPTO-ACOUSTIC METAMATERIAL
PHOXONIC CRYSTAL
POROUS SILICON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/185053

id CONICETDig_287ac8f2f989de3adea5b7ed87c3a672
oai_identifier_str oai:ri.conicet.gov.ar:11336/185053
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystalsForzani, LuisinaMendez, Carlos GustavoUrteaga, RaulHuespe, Alfredo EdmundoOPTO-ACOUSTIC DEVICEOPTO-ACOUSTIC METAMATERIALPHOXONIC CRYSTALPOROUS SILICONhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185053Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-240924-4247CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0924424721003800info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2021.112915info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:03Zoai:ri.conicet.gov.ar:11336/185053instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:03.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
title Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
spellingShingle Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
Forzani, Luisina
OPTO-ACOUSTIC DEVICE
OPTO-ACOUSTIC METAMATERIAL
PHOXONIC CRYSTAL
POROUS SILICON
title_short Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
title_full Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
title_fullStr Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
title_full_unstemmed Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
title_sort Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals
dc.creator.none.fl_str_mv Forzani, Luisina
Mendez, Carlos Gustavo
Urteaga, Raul
Huespe, Alfredo Edmundo
author Forzani, Luisina
author_facet Forzani, Luisina
Mendez, Carlos Gustavo
Urteaga, Raul
Huespe, Alfredo Edmundo
author_role author
author2 Mendez, Carlos Gustavo
Urteaga, Raul
Huespe, Alfredo Edmundo
author2_role author
author
author
dc.subject.none.fl_str_mv OPTO-ACOUSTIC DEVICE
OPTO-ACOUSTIC METAMATERIAL
PHOXONIC CRYSTAL
POROUS SILICON
topic OPTO-ACOUSTIC DEVICE
OPTO-ACOUSTIC METAMATERIAL
PHOXONIC CRYSTAL
POROUS SILICON
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.
Fil: Forzani, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Mendez, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
description We present the theoretical study of an opto-acoustic microdevice, a phoxonic crystal, made of porous silicon with a specific acoustic response in the range of tens of MHz and optical response in the visible and near-infrared range. We propose to control the opto-acoustic response of this device by spatially modulating the microstructure porosity. Based on this study, a multilayer microcavity is designed to have a strong coupling between the acoustic and optical response. The coupling mechanism is generated by exploiting the structural resonance due to the acoustic waves which produce maximum mechanical strains at the center of the cavity. The associated mechanical deformations of the central cavity change the optical response of the multilayer, allowing the mechanical response to be detected using optical techniques. In a phoxonic crystal, the acoustic and optic central gap frequencies are determined by the multilayer configuration which imposes a fixed relation between both resonant frequencies. This feature establishes a challenge for the microdevice design. To mitigate this problem, two microcavities, one inside the other in a matryoshka-like configuration is here proposed, placing an optical microcavity into the spacer of an acoustic microcavity. Consequently, the localized acoustic field generates a high perturbation of the optical microcavity structure. The optical microcavity is tuned at near-infrared frequencies, while the larger acoustic microcavity resonates at acoustic frequencies of the order of tens of MHz. The microdevice is designed to display a high optical response induced by acoustic deformation. Optical sensitivity to this effect is used to design a multiparametric sensor. Thanks to the porous structure of the device, it is possible to build a transducer sensitive to the presence of analytes in the environment that affect both its mechanical and optical response.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/185053
Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-24
0924-4247
CONICET Digital
CONICET
url http://hdl.handle.net/11336/185053
identifier_str_mv Forzani, Luisina; Mendez, Carlos Gustavo; Urteaga, Raul; Huespe, Alfredo Edmundo; Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals; Elsevier Science SA; Sensors and Actuators A: Physical; 331; 11-2021; 1-24
0924-4247
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0924424721003800
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2021.112915
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614177320075264
score 13.260194