Notions of computation as monoids

Autores
Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.
Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Materia
Monoidal Categories
Monad
Applicative Functor
Arrow
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50344

id CONICETDig_27d966e9263c0df252bc671f89fb4bab
oai_identifier_str oai:ri.conicet.gov.ar:11336/50344
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Notions of computation as monoidsRivas Gadda, Exequiel MatíasJaskelioff, Mauro JavierMonoidal CategoriesMonadApplicative FunctorArrowhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaCambridge University Press2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50344Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-20170956-7968CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0956796817000132/type/journal_articleinfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0956796817000132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:59Zoai:ri.conicet.gov.ar:11336/50344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:59.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Notions of computation as monoids
title Notions of computation as monoids
spellingShingle Notions of computation as monoids
Rivas Gadda, Exequiel Matías
Monoidal Categories
Monad
Applicative Functor
Arrow
title_short Notions of computation as monoids
title_full Notions of computation as monoids
title_fullStr Notions of computation as monoids
title_full_unstemmed Notions of computation as monoids
title_sort Notions of computation as monoids
dc.creator.none.fl_str_mv Rivas Gadda, Exequiel Matías
Jaskelioff, Mauro Javier
author Rivas Gadda, Exequiel Matías
author_facet Rivas Gadda, Exequiel Matías
Jaskelioff, Mauro Javier
author_role author
author2 Jaskelioff, Mauro Javier
author2_role author
dc.subject.none.fl_str_mv Monoidal Categories
Monad
Applicative Functor
Arrow
topic Monoidal Categories
Monad
Applicative Functor
Arrow
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.
Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
description There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50344
Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-2017
0956-7968
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50344
identifier_str_mv Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-2017
0956-7968
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0956796817000132/type/journal_article
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0956796817000132
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613086142529536
score 13.070432