Notions of computation as monoids
- Autores
- Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.
Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
Monoidal Categories
Monad
Applicative Functor
Arrow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50344
Ver los metadatos del registro completo
id |
CONICETDig_27d966e9263c0df252bc671f89fb4bab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50344 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Notions of computation as monoidsRivas Gadda, Exequiel MatíasJaskelioff, Mauro JavierMonoidal CategoriesMonadApplicative FunctorArrowhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them.Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaCambridge University Press2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50344Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-20170956-7968CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0956796817000132/type/journal_articleinfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0956796817000132info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:59Zoai:ri.conicet.gov.ar:11336/50344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:59.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Notions of computation as monoids |
title |
Notions of computation as monoids |
spellingShingle |
Notions of computation as monoids Rivas Gadda, Exequiel Matías Monoidal Categories Monad Applicative Functor Arrow |
title_short |
Notions of computation as monoids |
title_full |
Notions of computation as monoids |
title_fullStr |
Notions of computation as monoids |
title_full_unstemmed |
Notions of computation as monoids |
title_sort |
Notions of computation as monoids |
dc.creator.none.fl_str_mv |
Rivas Gadda, Exequiel Matías Jaskelioff, Mauro Javier |
author |
Rivas Gadda, Exequiel Matías |
author_facet |
Rivas Gadda, Exequiel Matías Jaskelioff, Mauro Javier |
author_role |
author |
author2 |
Jaskelioff, Mauro Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Monoidal Categories Monad Applicative Functor Arrow |
topic |
Monoidal Categories Monad Applicative Functor Arrow |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them. Fil: Rivas Gadda, Exequiel Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Jaskelioff, Mauro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article, we show that these three notions can be seen as instances of a unifying abstract concept: monoids in monoidal categories. We demonstrate that even when working at this high level of generality, one can obtain useful results. In particular, we give conditions under which one can obtain free monoids and Cayley representations at the level of monoidal categories, and we show that their concretisation results in useful constructions for monads, applicative functors, and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of computation, we introduce a principled approach to the analysis of the relation between them. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50344 Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-2017 0956-7968 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50344 |
identifier_str_mv |
Rivas Gadda, Exequiel Matías; Jaskelioff, Mauro Javier; Notions of computation as monoids; Cambridge University Press; Journal Of Functional Programming; 27; 10-2017 0956-7968 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0956796817000132/type/journal_article info:eu-repo/semantics/altIdentifier/doi/10.1017/S0956796817000132 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613086142529536 |
score |
13.070432 |