Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds
- Autores
- Origlia, Marcos Miguel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study Lie algebras of type I, that is, a Lie algebra g where all the eigenvalues of the operator ad X are imaginary for all X g. We prove that the Morse-Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure.
Fil: Origlia, Marcos Miguel. Katholikie Universiteit Leuven; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
LATTICE
LIE ALGEBRAS OF TYPE I
LOCALLY CONFORMAL KÄHLER METRIC
LOCALLY CONFORMAL SYMPLECTIC STRUCTURE
SOLVMANIFOLD
VAISMAN METRIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125022
Ver los metadatos del registro completo
id |
CONICETDig_ff0097cfa7c7bed5bbf62e15563c119d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125022 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifoldsOriglia, Marcos MiguelLATTICELIE ALGEBRAS OF TYPE ILOCALLY CONFORMAL KÄHLER METRICLOCALLY CONFORMAL SYMPLECTIC STRUCTURESOLVMANIFOLDVAISMAN METRIChttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study Lie algebras of type I, that is, a Lie algebra g where all the eigenvalues of the operator ad X are imaginary for all X g. We prove that the Morse-Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure.Fil: Origlia, Marcos Miguel. Katholikie Universiteit Leuven; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaDe Gruyter2019-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125022Origlia, Marcos Miguel; Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds; De Gruyter; Forum Mathematicum; 31; 3; 1-5-2019; 563-5780933-77411435-5337CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2018-0200info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/form/31/3/article-p563.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:48Zoai:ri.conicet.gov.ar:11336/125022instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:48.486CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
title |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
spellingShingle |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds Origlia, Marcos Miguel LATTICE LIE ALGEBRAS OF TYPE I LOCALLY CONFORMAL KÄHLER METRIC LOCALLY CONFORMAL SYMPLECTIC STRUCTURE SOLVMANIFOLD VAISMAN METRIC |
title_short |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
title_full |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
title_fullStr |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
title_full_unstemmed |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
title_sort |
Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds |
dc.creator.none.fl_str_mv |
Origlia, Marcos Miguel |
author |
Origlia, Marcos Miguel |
author_facet |
Origlia, Marcos Miguel |
author_role |
author |
dc.subject.none.fl_str_mv |
LATTICE LIE ALGEBRAS OF TYPE I LOCALLY CONFORMAL KÄHLER METRIC LOCALLY CONFORMAL SYMPLECTIC STRUCTURE SOLVMANIFOLD VAISMAN METRIC |
topic |
LATTICE LIE ALGEBRAS OF TYPE I LOCALLY CONFORMAL KÄHLER METRIC LOCALLY CONFORMAL SYMPLECTIC STRUCTURE SOLVMANIFOLD VAISMAN METRIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study Lie algebras of type I, that is, a Lie algebra g where all the eigenvalues of the operator ad X are imaginary for all X g. We prove that the Morse-Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure. Fil: Origlia, Marcos Miguel. Katholikie Universiteit Leuven; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We study Lie algebras of type I, that is, a Lie algebra g where all the eigenvalues of the operator ad X are imaginary for all X g. We prove that the Morse-Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125022 Origlia, Marcos Miguel; Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds; De Gruyter; Forum Mathematicum; 31; 3; 1-5-2019; 563-578 0933-7741 1435-5337 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125022 |
identifier_str_mv |
Origlia, Marcos Miguel; Locally conformal symplectic structures on Lie algebras of type i and their solvmanifolds; De Gruyter; Forum Mathematicum; 31; 3; 1-5-2019; 563-578 0933-7741 1435-5337 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2018-0200 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/form/31/3/article-p563.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981316844322816 |
score |
12.48226 |