Stochastic description for open quantum systems

Autores
Calzetta, Esteban Adolfo; Roura, Albert; Verdaguer, Enric
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A linear quantum Brownian motion model with a general spectral density function is considered. In the framework of the influence functional formalism, a Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. In particular, we show that the reduced Wigner function for the system can be formally written as a double average over both the initial conditions and the stochastic source of the Langevin equation. This is exploited to provide a derivation of the master equation for the reduced density matrix alternative to those existing in the literature. Furthermore, we prove that all the correlation functions obtained in the context of the stochastic description associated to the Langevin equation actually correspond to quantum correlation functions for system observables. In doing so, we also compute the closed time path generating functional of the open system. © 2002 Elsevier Science B.V. All rights reserved.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Roura, Albert. Universidad de Barcelona; España
Fil: Verdaguer, Enric. Universidad de Barcelona; España
Materia
Langevin Equation
Open Quantum Systems
Quantum Brownian Motion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75502

id CONICETDig_180094568d446370400b2746f5def636
oai_identifier_str oai:ri.conicet.gov.ar:11336/75502
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stochastic description for open quantum systemsCalzetta, Esteban AdolfoRoura, AlbertVerdaguer, EnricLangevin EquationOpen Quantum SystemsQuantum Brownian Motionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A linear quantum Brownian motion model with a general spectral density function is considered. In the framework of the influence functional formalism, a Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. In particular, we show that the reduced Wigner function for the system can be formally written as a double average over both the initial conditions and the stochastic source of the Langevin equation. This is exploited to provide a derivation of the master equation for the reduced density matrix alternative to those existing in the literature. Furthermore, we prove that all the correlation functions obtained in the context of the stochastic description associated to the Langevin equation actually correspond to quantum correlation functions for system observables. In doing so, we also compute the closed time path generating functional of the open system. © 2002 Elsevier Science B.V. All rights reserved.Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Roura, Albert. Universidad de Barcelona; EspañaFil: Verdaguer, Enric. Universidad de Barcelona; EspañaElsevier Science2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75502Calzetta, Esteban Adolfo; Roura, Albert; Verdaguer, Enric; Stochastic description for open quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 319; 12-2003; 188-2120378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0378-4371(02)01521-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:28Zoai:ri.conicet.gov.ar:11336/75502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:28.628CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stochastic description for open quantum systems
title Stochastic description for open quantum systems
spellingShingle Stochastic description for open quantum systems
Calzetta, Esteban Adolfo
Langevin Equation
Open Quantum Systems
Quantum Brownian Motion
title_short Stochastic description for open quantum systems
title_full Stochastic description for open quantum systems
title_fullStr Stochastic description for open quantum systems
title_full_unstemmed Stochastic description for open quantum systems
title_sort Stochastic description for open quantum systems
dc.creator.none.fl_str_mv Calzetta, Esteban Adolfo
Roura, Albert
Verdaguer, Enric
author Calzetta, Esteban Adolfo
author_facet Calzetta, Esteban Adolfo
Roura, Albert
Verdaguer, Enric
author_role author
author2 Roura, Albert
Verdaguer, Enric
author2_role author
author
dc.subject.none.fl_str_mv Langevin Equation
Open Quantum Systems
Quantum Brownian Motion
topic Langevin Equation
Open Quantum Systems
Quantum Brownian Motion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A linear quantum Brownian motion model with a general spectral density function is considered. In the framework of the influence functional formalism, a Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. In particular, we show that the reduced Wigner function for the system can be formally written as a double average over both the initial conditions and the stochastic source of the Langevin equation. This is exploited to provide a derivation of the master equation for the reduced density matrix alternative to those existing in the literature. Furthermore, we prove that all the correlation functions obtained in the context of the stochastic description associated to the Langevin equation actually correspond to quantum correlation functions for system observables. In doing so, we also compute the closed time path generating functional of the open system. © 2002 Elsevier Science B.V. All rights reserved.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Roura, Albert. Universidad de Barcelona; España
Fil: Verdaguer, Enric. Universidad de Barcelona; España
description A linear quantum Brownian motion model with a general spectral density function is considered. In the framework of the influence functional formalism, a Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. In particular, we show that the reduced Wigner function for the system can be formally written as a double average over both the initial conditions and the stochastic source of the Langevin equation. This is exploited to provide a derivation of the master equation for the reduced density matrix alternative to those existing in the literature. Furthermore, we prove that all the correlation functions obtained in the context of the stochastic description associated to the Langevin equation actually correspond to quantum correlation functions for system observables. In doing so, we also compute the closed time path generating functional of the open system. © 2002 Elsevier Science B.V. All rights reserved.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75502
Calzetta, Esteban Adolfo; Roura, Albert; Verdaguer, Enric; Stochastic description for open quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 319; 12-2003; 188-212
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75502
identifier_str_mv Calzetta, Esteban Adolfo; Roura, Albert; Verdaguer, Enric; Stochastic description for open quantum systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 319; 12-2003; 188-212
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0378-4371(02)01521-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614288580280320
score 13.070432