Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
- Autores
- Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Marsden, Jerrold E.. Institute of Technology; Estados Unidos
Fil: Pekarsky, Sergey. Moody’s Investors Service; Estados Unidos
Fil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; Suiza - Materia
-
VARIATIONAL PRINCIPLES
LIEPOISSON EQUATIONS
HAMILTONPOINCARE EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98567
Ver los metadatos del registro completo
| id |
CONICETDig_24f795e25a8c22957a60c911195f1dd6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98567 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Variational Principles for Lie-Poisson and Hamilton-Poincaré EquationsCendra, HernanMarsden, Jerrold E.Pekarsky, SergeyRatiu, Tudor S.VARIATIONAL PRINCIPLESLIEPOISSON EQUATIONSHAMILTONPOINCARE EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Marsden, Jerrold E.. Institute of Technology; Estados UnidosFil: Pekarsky, Sergey. Moody’s Investors Service; Estados UnidosFil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; SuizaIndependent Univ Moscow2003-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98567Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-8671609-33211609-4514CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:46:59Zoai:ri.conicet.gov.ar:11336/98567instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:46:59.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| title |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| spellingShingle |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations Cendra, Hernan VARIATIONAL PRINCIPLES LIEPOISSON EQUATIONS HAMILTONPOINCARE EQUATIONS |
| title_short |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| title_full |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| title_fullStr |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| title_full_unstemmed |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| title_sort |
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations |
| dc.creator.none.fl_str_mv |
Cendra, Hernan Marsden, Jerrold E. Pekarsky, Sergey Ratiu, Tudor S. |
| author |
Cendra, Hernan |
| author_facet |
Cendra, Hernan Marsden, Jerrold E. Pekarsky, Sergey Ratiu, Tudor S. |
| author_role |
author |
| author2 |
Marsden, Jerrold E. Pekarsky, Sergey Ratiu, Tudor S. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
VARIATIONAL PRINCIPLES LIEPOISSON EQUATIONS HAMILTONPOINCARE EQUATIONS |
| topic |
VARIATIONAL PRINCIPLES LIEPOISSON EQUATIONS HAMILTONPOINCARE EQUATIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors. Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Marsden, Jerrold E.. Institute of Technology; Estados Unidos Fil: Pekarsky, Sergey. Moody’s Investors Service; Estados Unidos Fil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; Suiza |
| description |
As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors. |
| publishDate |
2003 |
| dc.date.none.fl_str_mv |
2003-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98567 Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867 1609-3321 1609-4514 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/98567 |
| identifier_str_mv |
Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867 1609-3321 1609-4514 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/ info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Independent Univ Moscow |
| publisher.none.fl_str_mv |
Independent Univ Moscow |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782173600808960 |
| score |
12.982451 |