Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations

Autores
Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Marsden, Jerrold E.. Institute of Technology; Estados Unidos
Fil: Pekarsky, Sergey. Moody’s Investors Service; Estados Unidos
Fil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; Suiza
Materia
VARIATIONAL PRINCIPLES
LIEPOISSON EQUATIONS
HAMILTONPOINCARE EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98567

id CONICETDig_24f795e25a8c22957a60c911195f1dd6
oai_identifier_str oai:ri.conicet.gov.ar:11336/98567
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Variational Principles for Lie-Poisson and Hamilton-Poincaré EquationsCendra, HernanMarsden, Jerrold E.Pekarsky, SergeyRatiu, Tudor S.VARIATIONAL PRINCIPLESLIEPOISSON EQUATIONSHAMILTONPOINCARE EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Marsden, Jerrold E.. Institute of Technology; Estados UnidosFil: Pekarsky, Sergey. Moody’s Investors Service; Estados UnidosFil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; SuizaIndependent Univ Moscow2003-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98567Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-8671609-33211609-4514CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:46:59Zoai:ri.conicet.gov.ar:11336/98567instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:46:59.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
title Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
spellingShingle Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
Cendra, Hernan
VARIATIONAL PRINCIPLES
LIEPOISSON EQUATIONS
HAMILTONPOINCARE EQUATIONS
title_short Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
title_full Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
title_fullStr Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
title_full_unstemmed Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
title_sort Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations
dc.creator.none.fl_str_mv Cendra, Hernan
Marsden, Jerrold E.
Pekarsky, Sergey
Ratiu, Tudor S.
author Cendra, Hernan
author_facet Cendra, Hernan
Marsden, Jerrold E.
Pekarsky, Sergey
Ratiu, Tudor S.
author_role author
author2 Marsden, Jerrold E.
Pekarsky, Sergey
Ratiu, Tudor S.
author2_role author
author
author
dc.subject.none.fl_str_mv VARIATIONAL PRINCIPLES
LIEPOISSON EQUATIONS
HAMILTONPOINCARE EQUATIONS
topic VARIATIONAL PRINCIPLES
LIEPOISSON EQUATIONS
HAMILTONPOINCARE EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Marsden, Jerrold E.. Institute of Technology; Estados Unidos
Fil: Pekarsky, Sergey. Moody’s Investors Service; Estados Unidos
Fil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; Suiza
description As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
publishDate 2003
dc.date.none.fl_str_mv 2003-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98567
Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867
1609-3321
1609-4514
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98567
identifier_str_mv Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867
1609-3321
1609-4514
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/
info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Independent Univ Moscow
publisher.none.fl_str_mv Independent Univ Moscow
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782173600808960
score 12.982451