Asking infinite voters ‘Who is a J?’: Group Identification Problems in N
- Autores
- Fioravanti, Federico; Tohmé, Fernando Abel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We analyze the problem of classifing individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N0 ⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (1997) characterized different CIFs axiomatically when |N| < ∞, in particular the Liberal and Oligarchic aggregators. We show that in the infinite setting the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent.
Fil: Fioravanti, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
VIII Congreso Nacional de Estudiantes de Postgrado en Economía
Argentina
Universidad Nacional del Sur. Departamento de Economía
Instituto de Investigaciones Económicas y Sociales del Sur - Materia
-
Infinite Voters
SOCIAL CHOICE
AGGREGATION
GROUP IDENTIFICATION PROBLEM
INFINITE VOTERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155085
Ver los metadatos del registro completo
id |
CONICETDig_2426b978090a4d2eb088e79fb363c327 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155085 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in NFioravanti, FedericoTohmé, Fernando AbelInfinite VotersSOCIAL CHOICEAGGREGATIONGROUP IDENTIFICATION PROBLEMINFINITE VOTERShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze the problem of classifing individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N0 ⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (1997) characterized different CIFs axiomatically when |N| < ∞, in particular the Liberal and Oligarchic aggregators. We show that in the infinite setting the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent.Fil: Fioravanti, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaVIII Congreso Nacional de Estudiantes de Postgrado en EconomíaArgentinaUniversidad Nacional del Sur. Departamento de EconomíaInstituto de Investigaciones Económicas y Sociales del SurUniversidad Nacional del Sur. Departamento de Economía2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155085Asking infinite voters ‘Who is a J?’: Group Identification Problems in N; VIII Congreso Nacional de Estudiantes de Postgrado en Economía; Argentina; 2017; 1-11978-987-1648-40-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cnepe.blogspot.com/2017/info:eu-repo/semantics/altIdentifier/url/https://iiess.conicet.gov.ar/index.php/investigacion/publicaciones-grales/actas-e-informes/actasNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:00Zoai:ri.conicet.gov.ar:11336/155085instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:01.14CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
title |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
spellingShingle |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N Fioravanti, Federico Infinite Voters SOCIAL CHOICE AGGREGATION GROUP IDENTIFICATION PROBLEM INFINITE VOTERS |
title_short |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
title_full |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
title_fullStr |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
title_full_unstemmed |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
title_sort |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N |
dc.creator.none.fl_str_mv |
Fioravanti, Federico Tohmé, Fernando Abel |
author |
Fioravanti, Federico |
author_facet |
Fioravanti, Federico Tohmé, Fernando Abel |
author_role |
author |
author2 |
Tohmé, Fernando Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Infinite Voters SOCIAL CHOICE AGGREGATION GROUP IDENTIFICATION PROBLEM INFINITE VOTERS |
topic |
Infinite Voters SOCIAL CHOICE AGGREGATION GROUP IDENTIFICATION PROBLEM INFINITE VOTERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the problem of classifing individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N0 ⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (1997) characterized different CIFs axiomatically when |N| < ∞, in particular the Liberal and Oligarchic aggregators. We show that in the infinite setting the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent. Fil: Fioravanti, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina VIII Congreso Nacional de Estudiantes de Postgrado en Economía Argentina Universidad Nacional del Sur. Departamento de Economía Instituto de Investigaciones Económicas y Sociales del Sur |
description |
We analyze the problem of classifing individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N0 ⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (1997) characterized different CIFs axiomatically when |N| < ∞, in particular the Liberal and Oligarchic aggregators. We show that in the infinite setting the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155085 Asking infinite voters ‘Who is a J?’: Group Identification Problems in N; VIII Congreso Nacional de Estudiantes de Postgrado en Economía; Argentina; 2017; 1-11 978-987-1648-40-5 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155085 |
identifier_str_mv |
Asking infinite voters ‘Who is a J?’: Group Identification Problems in N; VIII Congreso Nacional de Estudiantes de Postgrado en Economía; Argentina; 2017; 1-11 978-987-1648-40-5 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cnepe.blogspot.com/2017/ info:eu-repo/semantics/altIdentifier/url/https://iiess.conicet.gov.ar/index.php/investigacion/publicaciones-grales/actas-e-informes/actas |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Sur. Departamento de Economía |
publisher.none.fl_str_mv |
Universidad Nacional del Sur. Departamento de Economía |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082774418587648 |
score |
13.22299 |