The inverse Sieve problem in high dimensions
- Autores
- Walsh, Miguel Nicolás
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh.
Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Sieve Theory
Arithmetic Combinatorics
Inverse Sieve Problem
Polynomial Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68296
Ver los metadatos del registro completo
id |
CONICETDig_2352a81e09df6c775a66c4eacbd670a3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68296 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The inverse Sieve problem in high dimensionsWalsh, Miguel NicolásSieve TheoryArithmetic CombinatoricsInverse Sieve ProblemPolynomial Methodhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh.Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDuke University Press2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68296Walsh, Miguel Nicolás; The inverse Sieve problem in high dimensions; Duke University Press; Duke Mathematical Journal; 161; 10; 7-2012; 2001-20220012-7094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1340801630info:eu-repo/semantics/altIdentifier/doi/10.1215/00127094-1645788info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:22Zoai:ri.conicet.gov.ar:11336/68296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:22.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The inverse Sieve problem in high dimensions |
title |
The inverse Sieve problem in high dimensions |
spellingShingle |
The inverse Sieve problem in high dimensions Walsh, Miguel Nicolás Sieve Theory Arithmetic Combinatorics Inverse Sieve Problem Polynomial Method |
title_short |
The inverse Sieve problem in high dimensions |
title_full |
The inverse Sieve problem in high dimensions |
title_fullStr |
The inverse Sieve problem in high dimensions |
title_full_unstemmed |
The inverse Sieve problem in high dimensions |
title_sort |
The inverse Sieve problem in high dimensions |
dc.creator.none.fl_str_mv |
Walsh, Miguel Nicolás |
author |
Walsh, Miguel Nicolás |
author_facet |
Walsh, Miguel Nicolás |
author_role |
author |
dc.subject.none.fl_str_mv |
Sieve Theory Arithmetic Combinatorics Inverse Sieve Problem Polynomial Method |
topic |
Sieve Theory Arithmetic Combinatorics Inverse Sieve Problem Polynomial Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh. Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68296 Walsh, Miguel Nicolás; The inverse Sieve problem in high dimensions; Duke University Press; Duke Mathematical Journal; 161; 10; 7-2012; 2001-2022 0012-7094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68296 |
identifier_str_mv |
Walsh, Miguel Nicolás; The inverse Sieve problem in high dimensions; Duke University Press; Duke Mathematical Journal; 161; 10; 7-2012; 2001-2022 0012-7094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1340801630 info:eu-repo/semantics/altIdentifier/doi/10.1215/00127094-1645788 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Duke University Press |
publisher.none.fl_str_mv |
Duke University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613579561500672 |
score |
13.070432 |