Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials
- Autores
- Korang, Steven Kwasi; von Rohden, Elena; Veroniki, Areti Angeliki; Ong, Giok; Ngalamika, Owen; Siddiqui, Faiza; Juul, Sophie; Nielsen, Emil Eik; Feinberg, Joshua Buron; Petersen, Johanne Juul; Legart, Christian; Kokogho, Afoke; Maagaard, Mathias; Klingenberg, Sarah; Thabane, Lehana; Bardach, Ariel Esteban; Ciapponi, Agustín; Thomsen, Allan Randrup; Jakobsen, Janus C.; Gluud, Christian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.
Fil: Korang, Steven Kwasi. Copenhagen University Hospital; Dinamarca
Fil: von Rohden, Elena. Copenhagen University Hospital; Dinamarca
Fil: Veroniki, Areti Angeliki. Imperial College London; Reino Unido. St. Michael’s Hospital; Canadá
Fil: Ong, Giok. John Radcliffe Hospital; Reino Unido
Fil: Ngalamika, Owen. University of Zambia; Zambia
Fil: Siddiqui, Faiza. Copenhagen University Hospital; Dinamarca
Fil: Juul, Sophie. Copenhagen University Hospital; Dinamarca
Fil: Nielsen, Emil Eik. Copenhagen University Hospital; Dinamarca
Fil: Feinberg, Joshua Buron. Copenhagen University Hospital; Dinamarca
Fil: Petersen, Johanne Juul. Copenhagen University Hospital; Dinamarca
Fil: Legart, Christian. Universidad de Copenhagen; Dinamarca. Copenhagen University Hospital; Dinamarca
Fil: Kokogho, Afoke. Henry M. Jackson Foundation Medical Research International; Nigeria
Fil: Maagaard, Mathias. Copenhagen University Hospital; Dinamarca. Zealand University Hospital; Dinamarca
Fil: Klingenberg, Sarah. Copenhagen University Hospital; Dinamarca
Fil: Thabane, Lehana. Mcmaster University; Canadá
Fil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Ciapponi, Agustín. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Thomsen, Allan Randrup. Universidad de Copenhagen; Dinamarca
Fil: Jakobsen, Janus C.. University of Southern Denmark; Dinamarca. Copenhagen University Hospital; Dinamarca
Fil: Gluud, Christian. Copenhagen University Hospital; Dinamarca. University of Southern Denmark; Dinamarca - Materia
-
COVID-19
Vaccines
Trial Sequential Analysis
Network meta-analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224283
Ver los metadatos del registro completo
id |
CONICETDig_229edfc6f454c47e326d46462f7ebd92 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trialsKorang, Steven Kwasivon Rohden, ElenaVeroniki, Areti AngelikiOng, GiokNgalamika, OwenSiddiqui, FaizaJuul, SophieNielsen, Emil EikFeinberg, Joshua BuronPetersen, Johanne JuulLegart, ChristianKokogho, AfokeMaagaard, MathiasKlingenberg, SarahThabane, LehanaBardach, Ariel EstebanCiapponi, AgustínThomsen, Allan RandrupJakobsen, Janus C.Gluud, ChristianCOVID-19VaccinesTrial Sequential AnalysisNetwork meta-analysishttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.Fil: Korang, Steven Kwasi. Copenhagen University Hospital; DinamarcaFil: von Rohden, Elena. Copenhagen University Hospital; DinamarcaFil: Veroniki, Areti Angeliki. Imperial College London; Reino Unido. St. Michael’s Hospital; CanadáFil: Ong, Giok. John Radcliffe Hospital; Reino UnidoFil: Ngalamika, Owen. University of Zambia; ZambiaFil: Siddiqui, Faiza. Copenhagen University Hospital; DinamarcaFil: Juul, Sophie. Copenhagen University Hospital; DinamarcaFil: Nielsen, Emil Eik. Copenhagen University Hospital; DinamarcaFil: Feinberg, Joshua Buron. Copenhagen University Hospital; DinamarcaFil: Petersen, Johanne Juul. Copenhagen University Hospital; DinamarcaFil: Legart, Christian. Universidad de Copenhagen; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Kokogho, Afoke. Henry M. Jackson Foundation Medical Research International; NigeriaFil: Maagaard, Mathias. Copenhagen University Hospital; Dinamarca. Zealand University Hospital; DinamarcaFil: Klingenberg, Sarah. Copenhagen University Hospital; DinamarcaFil: Thabane, Lehana. Mcmaster University; CanadáFil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Ciapponi, Agustín. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Thomsen, Allan Randrup. Universidad de Copenhagen; DinamarcaFil: Jakobsen, Janus C.. University of Southern Denmark; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Gluud, Christian. Copenhagen University Hospital; Dinamarca. University of Southern Denmark; DinamarcaPublic Library of Science2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224283Korang, Steven Kwasi; von Rohden, Elena; Veroniki, Areti Angeliki; Ong, Giok; Ngalamika, Owen; et al.; Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials; Public Library of Science; Plos One; 17; e0260733; 1-2022; 1-231932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0260733info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260733info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:34Zoai:ri.conicet.gov.ar:11336/224283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:35.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
title |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
spellingShingle |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials Korang, Steven Kwasi COVID-19 Vaccines Trial Sequential Analysis Network meta-analysis |
title_short |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
title_full |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
title_fullStr |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
title_full_unstemmed |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
title_sort |
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials |
dc.creator.none.fl_str_mv |
Korang, Steven Kwasi von Rohden, Elena Veroniki, Areti Angeliki Ong, Giok Ngalamika, Owen Siddiqui, Faiza Juul, Sophie Nielsen, Emil Eik Feinberg, Joshua Buron Petersen, Johanne Juul Legart, Christian Kokogho, Afoke Maagaard, Mathias Klingenberg, Sarah Thabane, Lehana Bardach, Ariel Esteban Ciapponi, Agustín Thomsen, Allan Randrup Jakobsen, Janus C. Gluud, Christian |
author |
Korang, Steven Kwasi |
author_facet |
Korang, Steven Kwasi von Rohden, Elena Veroniki, Areti Angeliki Ong, Giok Ngalamika, Owen Siddiqui, Faiza Juul, Sophie Nielsen, Emil Eik Feinberg, Joshua Buron Petersen, Johanne Juul Legart, Christian Kokogho, Afoke Maagaard, Mathias Klingenberg, Sarah Thabane, Lehana Bardach, Ariel Esteban Ciapponi, Agustín Thomsen, Allan Randrup Jakobsen, Janus C. Gluud, Christian |
author_role |
author |
author2 |
von Rohden, Elena Veroniki, Areti Angeliki Ong, Giok Ngalamika, Owen Siddiqui, Faiza Juul, Sophie Nielsen, Emil Eik Feinberg, Joshua Buron Petersen, Johanne Juul Legart, Christian Kokogho, Afoke Maagaard, Mathias Klingenberg, Sarah Thabane, Lehana Bardach, Ariel Esteban Ciapponi, Agustín Thomsen, Allan Randrup Jakobsen, Janus C. Gluud, Christian |
author2_role |
author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
COVID-19 Vaccines Trial Sequential Analysis Network meta-analysis |
topic |
COVID-19 Vaccines Trial Sequential Analysis Network meta-analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines. Fil: Korang, Steven Kwasi. Copenhagen University Hospital; Dinamarca Fil: von Rohden, Elena. Copenhagen University Hospital; Dinamarca Fil: Veroniki, Areti Angeliki. Imperial College London; Reino Unido. St. Michael’s Hospital; Canadá Fil: Ong, Giok. John Radcliffe Hospital; Reino Unido Fil: Ngalamika, Owen. University of Zambia; Zambia Fil: Siddiqui, Faiza. Copenhagen University Hospital; Dinamarca Fil: Juul, Sophie. Copenhagen University Hospital; Dinamarca Fil: Nielsen, Emil Eik. Copenhagen University Hospital; Dinamarca Fil: Feinberg, Joshua Buron. Copenhagen University Hospital; Dinamarca Fil: Petersen, Johanne Juul. Copenhagen University Hospital; Dinamarca Fil: Legart, Christian. Universidad de Copenhagen; Dinamarca. Copenhagen University Hospital; Dinamarca Fil: Kokogho, Afoke. Henry M. Jackson Foundation Medical Research International; Nigeria Fil: Maagaard, Mathias. Copenhagen University Hospital; Dinamarca. Zealand University Hospital; Dinamarca Fil: Klingenberg, Sarah. Copenhagen University Hospital; Dinamarca Fil: Thabane, Lehana. Mcmaster University; Canadá Fil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. Instituto de Efectividad Clínica y Sanitaria; Argentina Fil: Ciapponi, Agustín. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina Fil: Thomsen, Allan Randrup. Universidad de Copenhagen; Dinamarca Fil: Jakobsen, Janus C.. University of Southern Denmark; Dinamarca. Copenhagen University Hospital; Dinamarca Fil: Gluud, Christian. Copenhagen University Hospital; Dinamarca. University of Southern Denmark; Dinamarca |
description |
Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224283 Korang, Steven Kwasi; von Rohden, Elena; Veroniki, Areti Angeliki; Ong, Giok; Ngalamika, Owen; et al.; Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials; Public Library of Science; Plos One; 17; e0260733; 1-2022; 1-23 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224283 |
identifier_str_mv |
Korang, Steven Kwasi; von Rohden, Elena; Veroniki, Areti Angeliki; Ong, Giok; Ngalamika, Owen; et al.; Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials; Public Library of Science; Plos One; 17; e0260733; 1-2022; 1-23 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0260733 info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260733 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269040251240448 |
score |
13.13397 |