Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
- Autores
- Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Fil: Tilghman, Robert W.. University of Virginia; Estados Unidos
Fil: Blais, Edik M.. University of Virginia; Estados Unidos
Fil: Cowan, Catharine R.. University of Virginia; Estados Unidos
Fil: Sherman, Nicholas E.. University of Virginia; Estados Unidos
Fil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; Argentina
Fil: Jeffery, Erin D.. University of Virginia; Estados Unidos
Fil: Fox, Jay W.. University of Virginia; Estados Unidos
Fil: Blackman, Brett R.. University of Virginia; Estados Unidos
Fil: Tschumperlin, Daniel J.. Harvard Medical School; Estados Unidos
Fil: Papin, Jason A.. University of Virginia; Estados Unidos
Fil: Parsons, J. Thomas. University of Virginia; Estados Unidos - Materia
-
Matrix rigidity
cancer
SILAC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67839
Ver los metadatos del registro completo
id |
CONICETDig_210553a8b7bec703795119be7db46e4e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67839 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesisTilghman, Robert W.Blais, Edik M.Cowan, Catharine R.Sherman, Nicholas E.Grigera, Pablo RafaelJeffery, Erin D.Fox, Jay W.Blackman, Brett R.Tschumperlin, Daniel J.Papin, Jason A.Parsons, J. ThomasMatrix rigiditycancerSILAChttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.Fil: Tilghman, Robert W.. University of Virginia; Estados UnidosFil: Blais, Edik M.. University of Virginia; Estados UnidosFil: Cowan, Catharine R.. University of Virginia; Estados UnidosFil: Sherman, Nicholas E.. University of Virginia; Estados UnidosFil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; ArgentinaFil: Jeffery, Erin D.. University of Virginia; Estados UnidosFil: Fox, Jay W.. University of Virginia; Estados UnidosFil: Blackman, Brett R.. University of Virginia; Estados UnidosFil: Tschumperlin, Daniel J.. Harvard Medical School; Estados UnidosFil: Papin, Jason A.. University of Virginia; Estados UnidosFil: Parsons, J. Thomas. University of Virginia; Estados UnidosPublic Library of Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67839Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e372311932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0037231info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037231info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356407/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:48Zoai:ri.conicet.gov.ar:11336/67839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:48.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
title |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
spellingShingle |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis Tilghman, Robert W. Matrix rigidity cancer SILAC |
title_short |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
title_full |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
title_fullStr |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
title_full_unstemmed |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
title_sort |
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis |
dc.creator.none.fl_str_mv |
Tilghman, Robert W. Blais, Edik M. Cowan, Catharine R. Sherman, Nicholas E. Grigera, Pablo Rafael Jeffery, Erin D. Fox, Jay W. Blackman, Brett R. Tschumperlin, Daniel J. Papin, Jason A. Parsons, J. Thomas |
author |
Tilghman, Robert W. |
author_facet |
Tilghman, Robert W. Blais, Edik M. Cowan, Catharine R. Sherman, Nicholas E. Grigera, Pablo Rafael Jeffery, Erin D. Fox, Jay W. Blackman, Brett R. Tschumperlin, Daniel J. Papin, Jason A. Parsons, J. Thomas |
author_role |
author |
author2 |
Blais, Edik M. Cowan, Catharine R. Sherman, Nicholas E. Grigera, Pablo Rafael Jeffery, Erin D. Fox, Jay W. Blackman, Brett R. Tschumperlin, Daniel J. Papin, Jason A. Parsons, J. Thomas |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Matrix rigidity cancer SILAC |
topic |
Matrix rigidity cancer SILAC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. Fil: Tilghman, Robert W.. University of Virginia; Estados Unidos Fil: Blais, Edik M.. University of Virginia; Estados Unidos Fil: Cowan, Catharine R.. University of Virginia; Estados Unidos Fil: Sherman, Nicholas E.. University of Virginia; Estados Unidos Fil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; Argentina Fil: Jeffery, Erin D.. University of Virginia; Estados Unidos Fil: Fox, Jay W.. University of Virginia; Estados Unidos Fil: Blackman, Brett R.. University of Virginia; Estados Unidos Fil: Tschumperlin, Daniel J.. Harvard Medical School; Estados Unidos Fil: Papin, Jason A.. University of Virginia; Estados Unidos Fil: Parsons, J. Thomas. University of Virginia; Estados Unidos |
description |
Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67839 Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e37231 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67839 |
identifier_str_mv |
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e37231 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0037231 info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037231 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356407/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606042240352256 |
score |
13.001348 |