Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis

Autores
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Fil: Tilghman, Robert W.. University of Virginia; Estados Unidos
Fil: Blais, Edik M.. University of Virginia; Estados Unidos
Fil: Cowan, Catharine R.. University of Virginia; Estados Unidos
Fil: Sherman, Nicholas E.. University of Virginia; Estados Unidos
Fil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; Argentina
Fil: Jeffery, Erin D.. University of Virginia; Estados Unidos
Fil: Fox, Jay W.. University of Virginia; Estados Unidos
Fil: Blackman, Brett R.. University of Virginia; Estados Unidos
Fil: Tschumperlin, Daniel J.. Harvard Medical School; Estados Unidos
Fil: Papin, Jason A.. University of Virginia; Estados Unidos
Fil: Parsons, J. Thomas. University of Virginia; Estados Unidos
Materia
Matrix rigidity
cancer
SILAC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67839

id CONICETDig_210553a8b7bec703795119be7db46e4e
oai_identifier_str oai:ri.conicet.gov.ar:11336/67839
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesisTilghman, Robert W.Blais, Edik M.Cowan, Catharine R.Sherman, Nicholas E.Grigera, Pablo RafaelJeffery, Erin D.Fox, Jay W.Blackman, Brett R.Tschumperlin, Daniel J.Papin, Jason A.Parsons, J. ThomasMatrix rigiditycancerSILAChttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.Fil: Tilghman, Robert W.. University of Virginia; Estados UnidosFil: Blais, Edik M.. University of Virginia; Estados UnidosFil: Cowan, Catharine R.. University of Virginia; Estados UnidosFil: Sherman, Nicholas E.. University of Virginia; Estados UnidosFil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; ArgentinaFil: Jeffery, Erin D.. University of Virginia; Estados UnidosFil: Fox, Jay W.. University of Virginia; Estados UnidosFil: Blackman, Brett R.. University of Virginia; Estados UnidosFil: Tschumperlin, Daniel J.. Harvard Medical School; Estados UnidosFil: Papin, Jason A.. University of Virginia; Estados UnidosFil: Parsons, J. Thomas. University of Virginia; Estados UnidosPublic Library of Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67839Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e372311932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0037231info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037231info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356407/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:48Zoai:ri.conicet.gov.ar:11336/67839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:48.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
title Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
spellingShingle Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
Tilghman, Robert W.
Matrix rigidity
cancer
SILAC
title_short Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
title_full Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
title_fullStr Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
title_full_unstemmed Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
title_sort Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis
dc.creator.none.fl_str_mv Tilghman, Robert W.
Blais, Edik M.
Cowan, Catharine R.
Sherman, Nicholas E.
Grigera, Pablo Rafael
Jeffery, Erin D.
Fox, Jay W.
Blackman, Brett R.
Tschumperlin, Daniel J.
Papin, Jason A.
Parsons, J. Thomas
author Tilghman, Robert W.
author_facet Tilghman, Robert W.
Blais, Edik M.
Cowan, Catharine R.
Sherman, Nicholas E.
Grigera, Pablo Rafael
Jeffery, Erin D.
Fox, Jay W.
Blackman, Brett R.
Tschumperlin, Daniel J.
Papin, Jason A.
Parsons, J. Thomas
author_role author
author2 Blais, Edik M.
Cowan, Catharine R.
Sherman, Nicholas E.
Grigera, Pablo Rafael
Jeffery, Erin D.
Fox, Jay W.
Blackman, Brett R.
Tschumperlin, Daniel J.
Papin, Jason A.
Parsons, J. Thomas
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Matrix rigidity
cancer
SILAC
topic Matrix rigidity
cancer
SILAC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Fil: Tilghman, Robert W.. University of Virginia; Estados Unidos
Fil: Blais, Edik M.. University of Virginia; Estados Unidos
Fil: Cowan, Catharine R.. University of Virginia; Estados Unidos
Fil: Sherman, Nicholas E.. University of Virginia; Estados Unidos
Fil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; Argentina
Fil: Jeffery, Erin D.. University of Virginia; Estados Unidos
Fil: Fox, Jay W.. University of Virginia; Estados Unidos
Fil: Blackman, Brett R.. University of Virginia; Estados Unidos
Fil: Tschumperlin, Daniel J.. Harvard Medical School; Estados Unidos
Fil: Papin, Jason A.. University of Virginia; Estados Unidos
Fil: Parsons, J. Thomas. University of Virginia; Estados Unidos
description Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67839
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e37231
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67839
identifier_str_mv Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e37231
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0037231
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037231
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356407/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606042240352256
score 13.001348