Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective

Autores
Kappes, Mariano Alberto; Perez, Teresa E.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, KIH, can be 50% or less than KIC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
Fil: Kappes, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Perez, Teresa E.. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Materia
PIPELINE
FRACTURE TOUGHNESS
HYDROGEN EMBRITTLEMENT
BLENDING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/220333

id CONICETDig_208f649ed34a7bf7e55e0c25555d1a0c
oai_identifier_str oai:ri.conicet.gov.ar:11336/220333
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspectiveKappes, Mariano AlbertoPerez, Teresa E.PIPELINEFRACTURE TOUGHNESSHYDROGEN EMBRITTLEMENTBLENDINGhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, KIH, can be 50% or less than KIC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.Fil: Kappes, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Perez, Teresa E.. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaElsevier2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220333Kappes, Mariano Alberto; Perez, Teresa E.; Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective; Elsevier; Journal of Pipeline Science and Engineering; 2023; 6-2023; 1-162667-1433CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2667143323000331info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpse.2023.100141info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:15Zoai:ri.conicet.gov.ar:11336/220333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:15.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
title Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
spellingShingle Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
Kappes, Mariano Alberto
PIPELINE
FRACTURE TOUGHNESS
HYDROGEN EMBRITTLEMENT
BLENDING
title_short Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
title_full Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
title_fullStr Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
title_full_unstemmed Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
title_sort Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective
dc.creator.none.fl_str_mv Kappes, Mariano Alberto
Perez, Teresa E.
author Kappes, Mariano Alberto
author_facet Kappes, Mariano Alberto
Perez, Teresa E.
author_role author
author2 Perez, Teresa E.
author2_role author
dc.subject.none.fl_str_mv PIPELINE
FRACTURE TOUGHNESS
HYDROGEN EMBRITTLEMENT
BLENDING
topic PIPELINE
FRACTURE TOUGHNESS
HYDROGEN EMBRITTLEMENT
BLENDING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, KIH, can be 50% or less than KIC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
Fil: Kappes, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Perez, Teresa E.. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
description Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, KIH, can be 50% or less than KIC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/220333
Kappes, Mariano Alberto; Perez, Teresa E.; Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective; Elsevier; Journal of Pipeline Science and Engineering; 2023; 6-2023; 1-16
2667-1433
CONICET Digital
CONICET
url http://hdl.handle.net/11336/220333
identifier_str_mv Kappes, Mariano Alberto; Perez, Teresa E.; Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective; Elsevier; Journal of Pipeline Science and Engineering; 2023; 6-2023; 1-16
2667-1433
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2667143323000331
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpse.2023.100141
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269746625511424
score 13.13397