Optimization Approaches for Efficient Crude Blending in Large Oil Refineries
- Autores
- Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To increase profit margin, refiners usually upgrade low cost crude oils by mixing them with light crudes to obtain blends of higher value. In recent years, this trend is favored by a shifting in the market demand from gasoline toward diesel fuels that makes it more attractive to process crude blends with higher diesel yields. Using in-line blending stations, feedstocks for crude distillation units (CDUs) with the desired properties are obtained by mixing flows of different types of crude oils using the right blending recipe. In large oil refineries, several CDUs are available to process a wide variety of crude oils stored in many dedicated tanks. The scheduler must not only select the cluster of tanks allocated to each CDU but also determine the scheduling of the blending operations providing the best qualified feedstocks for every distillation unit. Trace element compositions and the temperature boiling point (TBP) curve are the properties normally controlled to set the feedstock quality. In this work, two alternative approaches are proposed to solve this challenging scheduling problem: (a) an exact mixed-integer nonlinear (MINLP) formulation that simultaneously considers tank allocation and operations scheduling decisions; (b) an efficient sequential approach based on a pair of MINLP subproblems making the tank allocation at the upper level and the scheduling decisions at the lower one. After validation, the sequential approach is successfully applied to new nine case studies involving up to four CDUs, 60 charging tanks, and 14 types of crude oil.
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Pautasso, Pedro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Crude Oil
Blending
Optimization
TBP Curve - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86892
Ver los metadatos del registro completo
id |
CONICETDig_11a24da9760e2ebd2fdecc8c73a63083 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86892 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization Approaches for Efficient Crude Blending in Large Oil RefineriesCerda, JaimePautasso, Pedro CarlosCafaro, Diego CarlosCrude OilBlendingOptimizationTBP Curvehttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2To increase profit margin, refiners usually upgrade low cost crude oils by mixing them with light crudes to obtain blends of higher value. In recent years, this trend is favored by a shifting in the market demand from gasoline toward diesel fuels that makes it more attractive to process crude blends with higher diesel yields. Using in-line blending stations, feedstocks for crude distillation units (CDUs) with the desired properties are obtained by mixing flows of different types of crude oils using the right blending recipe. In large oil refineries, several CDUs are available to process a wide variety of crude oils stored in many dedicated tanks. The scheduler must not only select the cluster of tanks allocated to each CDU but also determine the scheduling of the blending operations providing the best qualified feedstocks for every distillation unit. Trace element compositions and the temperature boiling point (TBP) curve are the properties normally controlled to set the feedstock quality. In this work, two alternative approaches are proposed to solve this challenging scheduling problem: (a) an exact mixed-integer nonlinear (MINLP) formulation that simultaneously considers tank allocation and operations scheduling decisions; (b) an efficient sequential approach based on a pair of MINLP subproblems making the tank allocation at the upper level and the scheduling decisions at the lower one. After validation, the sequential approach is successfully applied to new nine case studies involving up to four CDUs, 60 charging tanks, and 14 types of crude oil.Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pautasso, Pedro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Chemical Society2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86892Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos; Optimization Approaches for Efficient Crude Blending in Large Oil Refineries; American Chemical Society; Industrial & Engineering Chemical Research; 57; 25; 6-2018; 8484-85010888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b01008info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.8b01008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:22Zoai:ri.conicet.gov.ar:11336/86892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:23.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
title |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
spellingShingle |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries Cerda, Jaime Crude Oil Blending Optimization TBP Curve |
title_short |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
title_full |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
title_fullStr |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
title_full_unstemmed |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
title_sort |
Optimization Approaches for Efficient Crude Blending in Large Oil Refineries |
dc.creator.none.fl_str_mv |
Cerda, Jaime Pautasso, Pedro Carlos Cafaro, Diego Carlos |
author |
Cerda, Jaime |
author_facet |
Cerda, Jaime Pautasso, Pedro Carlos Cafaro, Diego Carlos |
author_role |
author |
author2 |
Pautasso, Pedro Carlos Cafaro, Diego Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Crude Oil Blending Optimization TBP Curve |
topic |
Crude Oil Blending Optimization TBP Curve |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
To increase profit margin, refiners usually upgrade low cost crude oils by mixing them with light crudes to obtain blends of higher value. In recent years, this trend is favored by a shifting in the market demand from gasoline toward diesel fuels that makes it more attractive to process crude blends with higher diesel yields. Using in-line blending stations, feedstocks for crude distillation units (CDUs) with the desired properties are obtained by mixing flows of different types of crude oils using the right blending recipe. In large oil refineries, several CDUs are available to process a wide variety of crude oils stored in many dedicated tanks. The scheduler must not only select the cluster of tanks allocated to each CDU but also determine the scheduling of the blending operations providing the best qualified feedstocks for every distillation unit. Trace element compositions and the temperature boiling point (TBP) curve are the properties normally controlled to set the feedstock quality. In this work, two alternative approaches are proposed to solve this challenging scheduling problem: (a) an exact mixed-integer nonlinear (MINLP) formulation that simultaneously considers tank allocation and operations scheduling decisions; (b) an efficient sequential approach based on a pair of MINLP subproblems making the tank allocation at the upper level and the scheduling decisions at the lower one. After validation, the sequential approach is successfully applied to new nine case studies involving up to four CDUs, 60 charging tanks, and 14 types of crude oil. Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Pautasso, Pedro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
To increase profit margin, refiners usually upgrade low cost crude oils by mixing them with light crudes to obtain blends of higher value. In recent years, this trend is favored by a shifting in the market demand from gasoline toward diesel fuels that makes it more attractive to process crude blends with higher diesel yields. Using in-line blending stations, feedstocks for crude distillation units (CDUs) with the desired properties are obtained by mixing flows of different types of crude oils using the right blending recipe. In large oil refineries, several CDUs are available to process a wide variety of crude oils stored in many dedicated tanks. The scheduler must not only select the cluster of tanks allocated to each CDU but also determine the scheduling of the blending operations providing the best qualified feedstocks for every distillation unit. Trace element compositions and the temperature boiling point (TBP) curve are the properties normally controlled to set the feedstock quality. In this work, two alternative approaches are proposed to solve this challenging scheduling problem: (a) an exact mixed-integer nonlinear (MINLP) formulation that simultaneously considers tank allocation and operations scheduling decisions; (b) an efficient sequential approach based on a pair of MINLP subproblems making the tank allocation at the upper level and the scheduling decisions at the lower one. After validation, the sequential approach is successfully applied to new nine case studies involving up to four CDUs, 60 charging tanks, and 14 types of crude oil. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86892 Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos; Optimization Approaches for Efficient Crude Blending in Large Oil Refineries; American Chemical Society; Industrial & Engineering Chemical Research; 57; 25; 6-2018; 8484-8501 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86892 |
identifier_str_mv |
Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos; Optimization Approaches for Efficient Crude Blending in Large Oil Refineries; American Chemical Society; Industrial & Engineering Chemical Research; 57; 25; 6-2018; 8484-8501 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b01008 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.8b01008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269092602445824 |
score |
13.13397 |