Analog data assimilation for the selection of suitable general circulation models
- Autores
- Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; Sévellec, Florian; Tandeo, Pierre
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; Francia
Fil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; Francia
Fil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
Fil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino Unido
Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia - Materia
-
Analog regression
Machine learning
Model validation
Data assimilation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214642
Ver los metadatos del registro completo
id |
CONICETDig_2074990b2576a1c9886069e2e84aa6e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214642 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analog data assimilation for the selection of suitable general circulation modelsRuiz, Juan JoseAilliot, PierreChau, Thi Tuyet TrangLe Bras, PierreMonbet, ValérieSévellec, FlorianTandeo, PierreAnalog regressionMachine learningModel validationData assimilationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; FranciaFil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; FranciaFil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; FranciaFil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino UnidoFil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; FranciaCopernicus Publications2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214642Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-72201991-959X1991-9603CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://gmd.copernicus.org/articles/15/7203/2022/info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-15-7203-2022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:33Zoai:ri.conicet.gov.ar:11336/214642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:34.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analog data assimilation for the selection of suitable general circulation models |
title |
Analog data assimilation for the selection of suitable general circulation models |
spellingShingle |
Analog data assimilation for the selection of suitable general circulation models Ruiz, Juan Jose Analog regression Machine learning Model validation Data assimilation |
title_short |
Analog data assimilation for the selection of suitable general circulation models |
title_full |
Analog data assimilation for the selection of suitable general circulation models |
title_fullStr |
Analog data assimilation for the selection of suitable general circulation models |
title_full_unstemmed |
Analog data assimilation for the selection of suitable general circulation models |
title_sort |
Analog data assimilation for the selection of suitable general circulation models |
dc.creator.none.fl_str_mv |
Ruiz, Juan Jose Ailliot, Pierre Chau, Thi Tuyet Trang Le Bras, Pierre Monbet, Valérie Sévellec, Florian Tandeo, Pierre |
author |
Ruiz, Juan Jose |
author_facet |
Ruiz, Juan Jose Ailliot, Pierre Chau, Thi Tuyet Trang Le Bras, Pierre Monbet, Valérie Sévellec, Florian Tandeo, Pierre |
author_role |
author |
author2 |
Ailliot, Pierre Chau, Thi Tuyet Trang Le Bras, Pierre Monbet, Valérie Sévellec, Florian Tandeo, Pierre |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Analog regression Machine learning Model validation Data assimilation |
topic |
Analog regression Machine learning Model validation Data assimilation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations. Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; Francia Fil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; Francia Fil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia Fil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino Unido Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia |
description |
Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214642 Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-7220 1991-959X 1991-9603 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214642 |
identifier_str_mv |
Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-7220 1991-959X 1991-9603 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://gmd.copernicus.org/articles/15/7203/2022/ info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-15-7203-2022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614111167512576 |
score |
13.070432 |