Analog data assimilation for the selection of suitable general circulation models

Autores
Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; Sévellec, Florian; Tandeo, Pierre
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; Francia
Fil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; Francia
Fil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
Fil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino Unido
Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
Materia
Analog regression
Machine learning
Model validation
Data assimilation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214642

id CONICETDig_2074990b2576a1c9886069e2e84aa6e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/214642
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analog data assimilation for the selection of suitable general circulation modelsRuiz, Juan JoseAilliot, PierreChau, Thi Tuyet TrangLe Bras, PierreMonbet, ValérieSévellec, FlorianTandeo, PierreAnalog regressionMachine learningModel validationData assimilationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; FranciaFil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; FranciaFil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; FranciaFil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino UnidoFil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; FranciaCopernicus Publications2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214642Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-72201991-959X1991-9603CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://gmd.copernicus.org/articles/15/7203/2022/info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-15-7203-2022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:33Zoai:ri.conicet.gov.ar:11336/214642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:34.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analog data assimilation for the selection of suitable general circulation models
title Analog data assimilation for the selection of suitable general circulation models
spellingShingle Analog data assimilation for the selection of suitable general circulation models
Ruiz, Juan Jose
Analog regression
Machine learning
Model validation
Data assimilation
title_short Analog data assimilation for the selection of suitable general circulation models
title_full Analog data assimilation for the selection of suitable general circulation models
title_fullStr Analog data assimilation for the selection of suitable general circulation models
title_full_unstemmed Analog data assimilation for the selection of suitable general circulation models
title_sort Analog data assimilation for the selection of suitable general circulation models
dc.creator.none.fl_str_mv Ruiz, Juan Jose
Ailliot, Pierre
Chau, Thi Tuyet Trang
Le Bras, Pierre
Monbet, Valérie
Sévellec, Florian
Tandeo, Pierre
author Ruiz, Juan Jose
author_facet Ruiz, Juan Jose
Ailliot, Pierre
Chau, Thi Tuyet Trang
Le Bras, Pierre
Monbet, Valérie
Sévellec, Florian
Tandeo, Pierre
author_role author
author2 Ailliot, Pierre
Chau, Thi Tuyet Trang
Le Bras, Pierre
Monbet, Valérie
Sévellec, Florian
Tandeo, Pierre
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Analog regression
Machine learning
Model validation
Data assimilation
topic Analog regression
Machine learning
Model validation
Data assimilation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; Francia
Fil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; Francia
Fil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
Fil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino Unido
Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
description Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214642
Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-7220
1991-959X
1991-9603
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214642
identifier_str_mv Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-7220
1991-959X
1991-9603
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://gmd.copernicus.org/articles/15/7203/2022/
info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-15-7203-2022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614111167512576
score 13.070432